• 제목/요약/키워드: Theoretical chemistry

검색결과 647건 처리시간 0.029초

Theoretical Study of the Relationships between Excited State Geometry Changes and Emission Energies of Oxyluciferin

  • Li, Zhong-Wei;Min, Chun-Gang;Ren, Ai-Min;Guo, Jing-Fu;Goddard, John D.;Feng, Ji-Kang;Zuo, Liang
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.895-900
    • /
    • 2010
  • In order to find a relationship between firefly luciferases structure and bioluminescence spectra, we focus on excited substrate geometries which may be affected by rigid luciferases. Density functional theory (DFT) and time dependent DFT (TDDFT) were employed. Changes in only six bond lengths of the excited substrate are important in determining the emission spectra. Analysis of these bonds suggests the mechanism whereby luciferases restrict more or less the excited substrate geometries and to produce multicolor bioluminescence.

Theoretical Studies on Mechanism and Kinetics of the Hydrogen-Abstraction Reaction of CF3CH2CHO with OH Radicals

  • Ci, Cheng-Gang;Yu, Hong-Bo;Wan, Su-Qin;Liu, Jing-Yao;Sun, Chia-Chung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1187-1194
    • /
    • 2011
  • The hydrogen abstraction reaction of $CF_3CH_2CHO$ + OH has been studied theoretically by dual-level direct dynamics method. Two stable conformers, trans- and cis-$CF_3CH_2CHO$, have been located, and there are four distinct OH hydrogen-abstraction channels from t-$CF_3CH_2CHO$ and two channels from c-$CF_3CH_2CHO$. The required potential energy surface information for the kinetic calculation was obtained at the MCG3-MPWB//M06-2X/aug-cc-pVDZ level. The rate constants, which were calculated using improved canonical transitionstate theory with small-curvature tunneling correction (ICVT/SCT) were fitted by a four-parameter Arrhenius equation. It is shown that the reaction proceeds predominantly via the H-abstraction from the -CHO group over the temperature range 200-2000 K. The calculated rate constants were in good agreement with the experimental data between 263 and 358 K.

Theoretical Analysis on Molecular Magnetic Properties of N-Confused Porphyrins and Its Derivatives

  • Wei, Wei;Bai, Fu-Quan;Xia, Bao-Hui;Zhang, Hong-Xing
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2937-2942
    • /
    • 2012
  • We have theoretically investigated the magnetic properties of N-confused porphyrin (NCP), tetraphenyl-N-confused porphyrin (TPNCP) and their substituted derivatives with O, S and Se heteroatoms (2ONCP, 2STPNCP, 2SeNCP, 2OTPNCP, etc.) by using DFT method. In the minimum energy structures of the 2OTPNCP, the two couples opposite phenyl substitutes are staggered. In the case of TPNCP, 2STPNCP and 2SeTPNCP, two phenyls being respectively close to or opposite to N-confused pyrrole are found to be pointed the same direction, whilst others are in the opposite direction. Based on the equilibrium structures, the $^1H$ chemical shifts and nucleus-independent chemical shifts (NICS) are calculated in this paper. The ${\pi}$ current density being induced by the tridimensional perpendicular magnetic field transmits the inner section of the pyrrole segments for NCP and TPNCP. As for their substituted derivatives with O, S and Se atoms, the current path passes through the outer section of the two heterorings. The NICS values at the ring critical points of the heterorings are much lower (in absolute value) than those of which is at the center of an isolated pyrrole molecule. The $^1H$ NMR for ${\beta}H$ atoms of the heterorings decreases from O, S to with Se.

Iridium (III) quinoxaline 착물의 전자 구조, 인광 및 전기 발광 특성에 대한 DFT 및 시간-의존 DFT 연구 (DFT and Time-dependant DFT Investigation of eLectronic Structure, Phosphorescence and Electroluminescence Properties of Iridium (III) Quinoxaline Complexes)

  • Zhou, Xiao-Qing;Li, Ying;Sun, Yan-Bo;Zhang, Hong-Xing
    • 대한화학회지
    • /
    • 제55권3호
    • /
    • pp.354-363
    • /
    • 2011
  • 3개의 적색 발광 Ir(III) 착물들인 $(fpmqx)_2Ir$(L) {fpmqx=2-(4-fluorophenyl)-3-methyl-quinoxaline; L=triazolylpyridine (trz) (1); L=picolinate (pic) (2) and L=acetylacetonate (acac) (3)}의 전자 구조, 흡수 및 인광 메커니즘, 전기 발광(EL) 특성을 양자화학적으로 연구하였다. 계산 결과에 따르면, 1의 HOMO는 강한 ${\eth}$-전자 받개 능력을 갖는 trz 부분에 편재되어 있으며, 2와 3의 HOMO는 Ir d-오비탈 과 페닐 고리 ${\pi}$-오비탈의 결합이라는 것을 나타내었다. 이 논문에서는 1-3사이의 인광 수득률과 차이에 대하여 연구하였으며, 1과 3보다 2의 EL 효율이 더 큰 이유를 합리적으로 설명하였다.

Methyl Viologen Mediated Oxygen Reduction in Ethanol Solvent: the Electrocatalytic Reactivity of the Radical Cation

  • Lin, Qianqi;Li, Qian;Batchelor-McAuley, Christopher;Compton, Richard G.
    • Journal of Electrochemical Science and Technology
    • /
    • 제4권2호
    • /
    • pp.71-80
    • /
    • 2013
  • The study of methyl viologen ($MV^{2+}$) mediated oxygen reduction in electrolytic ethanol media possesses potential application in the electrochemical synthesis of hydrogen peroxide mainly due to the advantages of the much increased solubility of molecular oxygen ($O_2$) and high degree of reversibility of $MV^{2+/{\bullet}+}$ redox couple. The diffusion coefficients of both $MV^{2+}$ and $O_2$ were investigated via electrochemical techniques. For the first time, $MV^{2+}$ mediated $O_2$ reduction in electrolytic ethanol solution has been proved to be feasible on both boron-doped diamond and micro-carbon disc electrodes. The electrocatalytic response is demonstrated to be due to the radical cation, $MV^{{\bullet}+}$. The homogeneous electron transfer step is suggested to be the rate determining step with a rate constant of $(1{\pm}0.1){\times}10^5M^{-1}s^{-1}$. With the aid of a simulation program describing the EC' mechanism, by increasing the concentration ratio of $MV^{2+}$ to $O_2$ electrochemical catalysis can be switched from a partial to a 'total catalysis' regime.

Binary Compound Formation upon Copper Dissolution: STM and SXPS Results

  • Hai, N.T.M.;Huemann, S.;Hunger, R.;Jaegermann, W.;Broekmann, P.;Wandelt, K.
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.198-205
    • /
    • 2007
  • The initial stages of electrochemical oxidative CuI film formation on Cu(111), as studied by means of Cyclic Voltammetry (CV), in-situ Scanning Tunneling Microscopy (STM) and ex-situ Synchrotron X-ray Photoemission Spectroscopy (SXPS), indicate a significant acceleration of copper oxidation in the presence of iodide anions in the electrolyte. A surface confined supersaturation with mobile CuI monomers first leads to the formation of a 2D-CuI film via nucleation and growth of a Cu/I-bilayer on-top of a pre-adsorbed iodide monolayer. Structurally, this 2D-CuI film is closely related to the (111) plane of crystalline CuI (zinc blende type). Interestingly, this film causes no significant passivation of the copper surface. In an advanced stage of copper dissolution a transition from the 2D- to a 3D-CuI growth mode can be observed.