• 제목/요약/키워드: Theoretical Study

검색결과 12,752건 처리시간 0.045초

가족 적응력과 가족기능과의 관계 : Olson의 순환모델의 곡선성과 Beavers의 체계모 델의 선형성 (The Comparison of Olson's Circumplex Model and the Beavers' Systems Model in terms of the Relationship between Family Adaptability and Family Function)

  • 장진경
    • 가정과삶의질연구
    • /
    • 제13권4호
    • /
    • pp.1-14
    • /
    • 1995
  • Various theoretical models have developed io both a family research area and family therapy field on he basis of several family theories and social theories in order to understand the family life and its function. These theoretical models have give rise to provide not only a framework for family therapy bt also opportunities for the development of family studies. Regardless of the devotion of these theoretical models to a family therapy however some family therapy professions have suggested the disvergence between these models and practice because the models tend to confuse therapists in their actual practices Other family therapists on the other hand have claimed the convergence between these models and practice. One of the reasons for the issues of convergence and disvergence in the family therapy study would be that various theoretical models have different sometimes contradicatable definitions and explanations for same concept. Therefore the purpose of this paper is to investigate the extent of similarities and differences among these theoretical models of practice in a way of examining family models to compare Olson's circumplex model to the Beavers systems model. Both models were based on the general systems theory. This paper consists of the explanation of Olson's circumplex model and Beavers systems model in general respectively. Then it will investigate similarities and differences between these two models in terms of the relationship between family functioning and family adaptability.

  • PDF

인터넷 중독 중재 프로그램으로서의 인지행동요법: 생리적 관점에서의 이론적 기틀 및 활용에 대한 고찰 (Review of Cognitive Behavioral Therapy as an Intervention Program for Internet Addicts: A Theoretical Framework and Implications with Physiological Perspectives)

  • 김나현;홍승희
    • Journal of Korean Biological Nursing Science
    • /
    • 제17권3호
    • /
    • pp.219-227
    • /
    • 2015
  • Purpose: This study was conducted to review physiological mechanisms of internet addiction and to construct a theoretical framework for cognitive behavioral therapy for internet addicts. Methods: We searched for relevant literature in the PubMed and RISS databases using the terms "internet addiction", "internet game addiction", "internet abuser", and "online game". Only English, full-text articles published from 2000 to 2015 were included in this review of physiological indicators of internet addiction. Finally, 12 articles were selected for review. Results: The theoretical framework developed based on the review proposes that excessive internet use itself may induce physiological stress responses with an increase of stress-related hormones and neurotransmitters. Prolonged abnormal responses of these physiological features produce negative structural and functional changes in the prefrontal cortex, which is mainly involved in cognitive and executive functions. These changes may result in decreased cognitive function. As a stressor, excessive internet use leads to transforming voluntary use into involuntary, habitual use and thus promotes the development of internet addiction. Conclusion: The proposed theoretical framework encompasses cognitive processes that may contribute to the effects of internet use-induced physiological stress on internet addiction. We believe that this framework has important implications for developing cognitive behavioral strategies for internet addicts.

초기 형상 불안정성 기반 성형한계선도의 이론적 변수에 따른 성형 한계영역 평가 (Evaluation of Analytical Parameters on Forming Limit Diagram based on Initial Geometrical Instability)

  • 노학곤;이병언;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제23권4호
    • /
    • pp.199-205
    • /
    • 2014
  • The current study examines the effect of the analytical parameter values on the theoretical forming limit diagram (FLD) based on the Marciniak-Kuczynski model (M-K model). Tensile tests were performed to obtain stress-strain curves and determine the anisotropic properties in the rolling, transverse and diagonal direction of SPCC sheet materials. The experimental forming limit curve for SPCC sheet material was obtained by limiting dome stretching tests. To predict the theoretical FLD based on the M-K model, the Hosford 79 yield function was employed. The effects of three analytical parameters - the exponent of the yield function, the initial imperfection parameter and the fracture criterion parameter - on the M-K model, were examined and the results of the theoretical FLD were compared to the experimentally measured FLD. It was found that the various analytical parameters should be carefully considered to reasonably predict the theoretical FLD. The comparison of the acceptable forming limit area between the theoretical and experimental FLD is used to compare the two diagrams.

Deflection calculation method on GFRP-concrete-steel composite beam

  • Tong, Zhaojie;Song, Xiaodong;Huang, Qiao
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.595-606
    • /
    • 2018
  • A calculation method was presented to calculate the deflection of GFRP-concrete-steel beams with full or partial shear connections. First, the sectional analysis method was improved by considering concrete nonlinearity and shear connection stiffness variation along the beam direction. Then the equivalent slip strain was used to take into consideration of variable cross-sections. Experiments and nonlinear finite element analysis were performed to validate the calculation method. The experimental results showed the deflection of composite beams could be accurately predicted by using the theoretical model or the finite element simulation. Furthermore, more finite element models were established to verify the accuracy of the theoretical model, which included different GFRP plates and different numbers of shear connectors. The theoretical results agreed well with the numerical results. In addition, parametric studies using theoretical method were also performed to find out the effect of parameters on the deflection. Based on the parametric studies, a simplified calculation formula of GFRP-concrete-steel composite beam was exhibited. In general, the calculation method could provide a more accurate theoretical result without complex finite element simulation, and serve for the further study of continuous GFRP-concrete-steel composite beams.

스파이럴형 풍력터빈 블레이드의 설계 및 공력특성에 관한 연구 (A study on design and aerodynamic characteristics of a spiral-type wind turbine blade)

  • 여건;리치앙;김윤기;김경천
    • 한국가시화정보학회지
    • /
    • 제10권1호
    • /
    • pp.27-33
    • /
    • 2012
  • This paper describes a new design of small-scale horizontal wind blade, called spiral wind turbine blade. Theoretical and numerical approaches on the prediction of aerodynamic performance of the blade have been conducted. A theoretical equation is successfully derived using the angular momentum equation to predict aerodynamic characteristics according to the design shape parameters of spiral blade. To be compared with the theoretical value, a numerical simulation using ANSYS CFX v12.1 is performed on the same design with the theoretical one. Large scale tip vortex is captured and graphically presented in this paper. The TSR-$C_p$ diagram shows a typical parabolic relation in which the maximum efficiency of the blade approximately 25% exists at TSR=2.5. The numerical simulation agrees well with that of the theoretical result except at the low rotational speed region of 0~20 rad/s.

유해유기물질에 대한 미생물 분해 반응식의 이론적 예측 (Theoretical Estimation of Stoichiometry for Biodegradation of Hazardous Organic Compounds)

  • 우승한;박종문
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권2호
    • /
    • pp.70-77
    • /
    • 2003
  • 유해유기물질의 미생물 분해시 일어나는 총괄반응을 이론적으로 예측하는 방법을 기술하였다. 열역학적 이론을 바탕으로 하는 반쪽반응 방법을 사용하,였고, 최근에 도입된 이론들인 중간체 생성 반응, oxygenation반응, 그룹이론에 의한 표준 자유생성에너지 예측기법 등을 적용하였다. 대표적인 유해유기물질인 phenanthrene과 함께 glucose, hexadecane의 미생물 분해 반응식을 실제로 계산하였다. 예측된 총괄반응식을 이용하여 미생물 수율, 산소 요구량, 질소 요구량, 무기화율 등의 정보를 얻을 수 있었으며, 이는 오염된 지하수/토양의 생물복원 공법 설계 및 자연정화평가 등에 유용하게 적용될 수 있을 것으로 기대한다.

차량 배기관용 V-Insert 클램프의 체결 성능 평가 (Characterization of V-Insert Clamp Joint Applied to Automobile Exhaust Pipes)

  • 황영은;윤성호
    • 한국정밀공학회지
    • /
    • 제29권2호
    • /
    • pp.208-213
    • /
    • 2012
  • In this study, the mechanical joint performance of the V-Insert clamp applied to automobile exhaust pipes was evaluated through the experimental investigation of its axial load capacity. The axial load of the V-Insert clamp was also determined by using theoretical equations presented by Shoghi and compared with the experimental results. As results of the theoretical prediction, the axial load of the V-Insert clamp tended to increase along with smaller angle of the V-Insert segment and the lower friction coefficient between the V-Insert segment and exhaust pipes. The experimental results under tightening effects were similar to the theoretical results and the axial load of the V-Insert clamp presented maximum values in the range of all torques at distance of 2mm between each exhaust pipes. The experimental results under loading effects were similar to the theoretical results in the range of lower torques but deviated from the theoretical results in the range of higher torques. These results would be beneficial to improve the joint and sealing performance of the V-Insert clamp.

Research on residual stress in SiCf reinforced titanium matrix composites

  • Qu, Haitao;Hou, Hongliang;Zhao, Bing;Lin, Song
    • Steel and Composite Structures
    • /
    • 제17권2호
    • /
    • pp.173-184
    • /
    • 2014
  • This study aimed to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites. The analytical solution of residual stress field distribution was obtained by using coaxial cylinder model, and the numerical solution was obtained by using finite element model (FEM). Both of the above models were compared and the thermal residual stress was analyzed in the axial, hoop, radial direction. The results indicated that both the two models were feasible to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites, because the deviations between the theoretical calculation results and the test results were less than 8%. In the titanium matrix composites, along with the increment of the SiC fiber volume fraction, the longitudinal property was improved, while the equivalent residual stress was not significantly changed, keeping the intensity around 600 MPa. There was a pronounced reduction of the radial residual stress in the titanium matrix composites when there was carbon coating on the surface of the SiC fiber, because carbon coating could effectively reduce the coefficient of thermal expansion mismatch between the fiber and the titanium matrix, meanwhile, the consumption of carbon coating could protect SiC fibers effectively, so as to ensure the high-performance of the composites. The support of design and optimization of composites was provided though theoretical calculation and analysis of residual stress.

Wind-induced random vibration of saddle membrane structures: Theoretical and experimental study

  • Rongjie Pan;Changjiang Liu;Dong Li;Yuanjun Sun;Weibin Huang;Ziye Chen
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.133-147
    • /
    • 2023
  • The random vibration of saddle membrane structures under wind load is studied theoretically and experimentally. First, the nonlinear random vibration differential equations of saddle membrane structures under wind loads are established based on von Karman's large deflection theory, thin shell theory and potential flow theory. The probabilistic density function (PDF) and its corresponding statistical parameters of the displacement response of membrane structure are obtained by using the diffusion process theory and the Fokker Planck Kolmogorov equation method (FPK) to solve the equation. Furthermore, a wind tunnel test is carried out to obtain the displacement time history data of the test model under wind load, and the statistical characteristics of the displacement time history of the prototype model are obtained by similarity theory and probability statistics method. Finally, the rationality of the theoretical model is verified by comparing the experimental model with the theoretical model. The results show that the theoretical model agrees with the experimental model, and the random vibration response can be effectively reduced by increasing the initial pretension force and the rise-span ratio within a certain range. The research methods can provide a theoretical reference for the random vibration of the membrane structure, and also be the foundation of structural reliability of membrane structure based on wind-induced response.

자율신경균형 증진 간호중재를 위한 생행동적 이론적 기틀 구축: 세포노화 기전 기반으로 (A biobehavioral theoretical framework based on the mechanism of cellular aging for nursing interventions to promote autonomic balance)

  • 김나현;박주연
    • Journal of Korean Biological Nursing Science
    • /
    • 제26권2호
    • /
    • pp.99-110
    • /
    • 2024
  • Purpose: This study reviewed the pathophysiological mechanisms of cellular aging caused by psychological stress and aimed to establish a biobehavioral theoretical framework for nursing interventions to promote autonomic balance based on these mechanisms. Methods: A comprehensive literature review was conducted. Results: A review of the literature showed that the stress response increases the secretion of catecholamines and glucocorticoids, resulting in a greater allostatic load. This load induces inflammatory reactions and oxidative stress, shortening telomere length and damaging mitochondrial DNA, which can lead to cellular aging. Based on this mechanism, a biobehavioral theoretical framework for nursing interventions was established. This framework focuses on delaying or inhibiting the cellular aging process by acting on the stress response stage and improving autonomic balance. Conclusion: According to the proposed biobehavioral theoretical framework, stress-relieving nursing interventions may act on the mechanism of cellular aging caused by stress responses. We believe that this framework could expand our understanding of the biobehavioral aspects of stress and would facilitate efforts to use biomarkers to evaluate the effectiveness of stress-related nursing interventions at the cellular level.