International Journal of Advanced Culture Technology
/
v.10
no.4
/
pp.499-510
/
2022
This study examines the reporting factors of crime against business in Korea and proposes a corresponding predictive model using machine learning. While many previous studies focused on the individual factors of theft victims, there is a lack of evidence on the reporting factors of crime against a business that serves the public good as opposed to those that protect private property. Therefore, we proposed a crime prevention model for the willingness factor of theft reporting in businesses. This study used data collected through the 2015 Commercial Crime Damage Survey conducted by the Korea Institute for Criminal Policy. It analyzed data from 834 businesses that had experienced theft during a 2016 crime investigation. The data showed a problem with unbalanced classes. To solve this problem, we jointly applied the Synthetic Minority Over Sampling Technique and the Tomek link techniques to the training data. Two prediction models were implemented. One was a statistical model using logistic regression and elastic net. The other involved a support vector machine model, tree-based machine learning models (e.g., random forest, extreme gradient boosting), and a stacking model. As a result, the features of theft price, invasion, and remedy, which are known to have significant effects on reporting theft offences, can be predicted as determinants of such offences in companies. Finally, we verified and compared the proposed predictive models using several popular metrics. Based on our evaluation of the importance of the features used in each model, we suggest a more accurate criterion for predicting var.
As the occurrence of a crime is dependent on different factors, their correlations are beyond the ordinary cognitive range. Owing to this limitation, systems face difficulty in correlating various factors, thereby requiring the assistance of artificial intelligence (AI) to overcome such limitations. Therefore, AI has become indispensable for crime prediction. Crimes can cause severe and irrevocable damage to a society. Recently, big data has been introduced for developing highly accurate models for crime prediction. Prediction of night crimes should be given significant consideration, because crimes primarily occur during nights, when the spatiotemporal characteristics become vulnerable to crimes. Many environmental factors that influence crime rate are applied for crime prediction, and their influence on crime rate may differ based on temporal characteristics and the nature of crime. This study aims to identify the environmental factors that influence sex and theft crimes occurring at night and proposes an artificial neural network (ANN) model to predict sex and theft crimes at night in random areas. The crime data of A district in Seoul for 12 years (2004-2015) was used, and environmental factors that influence sex and theft crimes were derived through multiple regression analysis. Two types of crime prediction models were developed: Type A using all environmental factors as input data; Type B with only the significant factors (obtained from regression analysis) as input data. The Type B model exhibited a greater accuracy than Type A, by 3.26 and 9.47 % higher for theft and sex crimes, respectively.
This study is to examine the relations between the big five critical crime that consist of homicide, robbery, rape, theft, violence and the private security services. To achieve this objective, this research selected the subject of study, specially, 2002 status of the private security such as the number of companies and employees classified by areas along with the big five crime mentioned above classified by area. The research data is secondary data that is from '2003 Crime Analysis' of the Supreme Public Prosecutors' Office and 'The private Security Related Data' of the National Police Agency. The selected data were analyzed according to the variables by using SPSS 10.0 statistics software program. Each hypothesis was verified around the level of significance ${\alpha}$=.05 by using the statistical techniques, such as Descriptive Statistics, Correlation, Regression, etc. The following was the result of the study, First, the total number of the big five crime affects the number of the companies at significant level. Second, the number of the security companies can be explained by the each total number of the big five crime in the order of theft, robbery, violence, rape and murder. Third, the total number of the big five crime affects the number of the security employees at significant level. Forth the number of the security employees can be explained by the each total number of the big five crime in the order of theft, robbery, violence, rape and murder.
The purpose of this study is to derive an optimal regression model for occurrences of major crimes on a security company's stock price through identifying precedence of the occurrences of major crimes on the security company's stock price, relationship between the occurrences of major crimes and the security company's stock price. Followings are the results of this study. First, the occurrences of murder crime, robbery crime, rape crime, theft crime move along the security company's monthly stock price simultaneously, and the occurrence of violence crime precedes 6 months to the security company's monthly stock price depending on the results of cross-correlation analysis of precedence of occurrences of major crimes, such as murder crime, robbery crime, rape crime, theft crime, violence crime on the security company's monthly stock price. Second, the explanation of the occurrences of robbery crime, rape crime, theft crime on the security company's monthly stock price is 61.7%($R^2$ = .617) excluding murder crime, violence crime depending on the results of multiple regression analysis(stepwise method) by putting the occurrences of major crimes, such as murder crime, robbery crime, rape crime, theft crime, violence crime into the security company's monthly stock price.
Apartments are built in small countries to accommodate densely populated cities and maximize urbanization. Many apartment complexes have been built in recent reconstruction or redevelopment projects. An increase in crime has resulted due to residents living in a narrow space. Larceny is the most commonly reported crime in apartment complexes. Apartments can be classified as stairway, hallway, or plane surface. This study compares and analyzes the frequency of theft by apartment type to assist in creating a safer residential space. In America and England, scholars studied to make a safer residential space, and have applied the theory of 'the Defensible Space' and 'Crime Prevention Through Environmental Design(CPTED)' since 1970s. Korean apartment design now reflects CPTED in new apartment construction. In this study, 12 apartment complexes were selected in Changwon city to conduct analysis of theft in selected complexes. The study will cover housing invasion theft, motorcycle and car theft and snatching. The most frequency larceny is motorcycle and car theft, the second is housing invasion theft, and the least frequent is snatching. More residents' motorcycles and cars are damaged in a hallway style apartment. More frequently inhabitants have their possessions snatched on a stairway form. 1) When we build new apartment complexes, we must plan to improve territoriality and enhance a natural surveillance by reinforcing dwellers' relationship. Through planning we can prevention the larceny in apartments.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.35
no.1
/
pp.31-39
/
2017
The goal of this study was to efficiently analyze the relationships of the number of thefts with related factors, considering the spatial patterns of theft crimes. Theft crime data for a 5-year period (2009-2013) were collected from Haeundae Police Station. A logarithmic transformation was performed to ensure an effective statistical analysis and the number of theft crimes was used as the dependent variable. Related factors were selected through a literature review and divided into social, environmental, and defensive factors. Seven factors, were selected as independent variables: the numbers of foreigners, aged persons, single households, companies, entertainment venues, community security centers, and CCTV (Closed-Circuit Television) systems. OLS (Ordinary Least Squares) and GWR (Geographically Weighted Regression) were used to analyze the relationship between the dependent variable and independent variables. In the GWR results, each independent variable had regression coefficients that differed by location over the study area. The GWR model calculated local values for, and could explain the relationships between, variables more efficiently than the OLS model. Additionally, the adjusted R square value of the GWR model was 10% higher than that of the OLS model, and the GWR model produced a AICc (Corrected Akaike Information Criterion) value that was lower by 230, as well as lower Moran's I values. From these results, it was concluded that the GWR model was more robust in explaining the relationship between the number of thefts and the factors related to theft crime.
The purpose of this paper is to analyze the correlation analysis between the experienced crime victimization rate and the evaluation indicator of residents' safety of outdoor spaces from crime in multi-family housing. Additionally this paper intend to analyze the correlation analysis between the residents' satisfaction about safety and the evaluation indicator of residents' safety of outdoor spaces. For that purpose, 9 Multi-Family Housing located in the metropolitan area were selected to perform a survey against 349 residents during May 26-29, 2006. The SPSS program was used and the level of satisfaction ranged from 1 to 5. Scale of 5 being most satisfied while 1 being most dissatisfied. The results of this study are the followings; 1) Most occurred crime were auto theft and damages, poster matter theft, housebreaking. 2) The crime rate is higher in outdoor than in indoor. 3) This study proved the correlation between the residents' satisfaction about housing safety and most indicators except the number of households etc. 4) By the results of the correlation coefficient it makes clear that the number of apartment building, the visibility of Green Space, the location of pedestrian etc. have relation with the residents' satisfaction about housing safety.
Park, Dong Hyun;Kang, In Joon;Choi, Hyun;Kim, Sang Seok
Journal of Korean Society for Geospatial Information Science
/
v.23
no.1
/
pp.31-37
/
2015
The recent long-term economic recession and business depression are constantly increasing the occurence of the five major crimes(murder, robbery, rape, theft, violence). When looking into the previously-analyzed characteristics of how the five major crimes are committed, this study understands that the crimes mostly occur in these crime-ridden areas of poor public order and security and, in order to decrease the crime rates of the crime-prone areas, any relevant fields have been emphasizing the application of CPTED. In the light of that, referring to CPTED surveillance factors and the current crime rate data, the study presented ways to help the relevant fields draw up a crime-prone area grade map. In particular, the security center among monitoring elements was visualized by dividing it into point patrol and directed patrol and by dividing it into 3 steps monitoring levels with CCTV and street lights. In addition, we checked the crime rate by zoning through crime statistics occurred in the research areas and established a crime status map. We estimated the weight through AHP analysis on the built monitoring elements and the zoning of the occurred areas, as a result of making a map vulnerable to crime by monitoring steps by overlapping each element, we were able to confirm that 60% of theft, 52% of violence and 33% of rape in the 1st grade area were reduced compared to the 1st step in monitoring Step 3.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.05a
/
pp.86-88
/
2013
Theft is secretly steal things of others. And theft tell the person who secretly stealing, bandits, stealing one's things. In modern society, theft is one of the crimes that occur frequently in the elevator. In this paper, theft crime is extracted using a ${\chi}^2$ histogram of scene change detection method. Extracted images are submitted as evidence for the action on the merits the court.
Journal of the Korean Society for Library and Information Science
/
v.53
no.1
/
pp.57-81
/
2019
An ontology is a complex structure dictionary that defines the relationship between terms and terms related to specific knowledge in a particular field. There have been attempts to construct various ontologies in Korea and abroad, but there has not been a case in which a large scale crime investigation record is constructed as an ontology and a service is implemented through the ontology. Therefore, this paper describes the process of constructing an ontology based on information extracted from instrusion theft field of unstructured data, a crime investigation document, and implementing an ontology-based search service and a crime spot recommendation service. In order to understand the performance of the search service, we have tested Top-K accuracy measurement, which is one of the accuracy measurement methods for event search, and obtained a maximum accuracy of 93.52% for the experimental data set. In addition, we have obtained a suitable clue field combination for the entire experimental data set, and we can calibrate the field location information in the database with the performance of F1-measure 76.19% Respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.