• Title/Summary/Keyword: The period of Vibration

Search Result 449, Processing Time 0.026 seconds

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.

Dialogical design of fuzzy controller using rough grasp of process property

  • Ishimaru, Naoyuki;Ishimoto, Tutomu;Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.265-271
    • /
    • 1992
  • It is the purpose of this paper to present a dialogical designing method for control system using a rough grasp of the unknown process property. We deal with a single-input single-output feedback control system with a fuzzy controller. The process property is roughly estimated by the step response, and the fuzzy controller is interactively modified according to the operator's requests. The modifying rules mainly derived from computer simulation are useful for almost every process, such as an unstable process and a non-minimum phase process. The fuzzy controller is tuned by taking notice of four characteristics of the step response: (1) rising time, (2) overshoot, (3) amplitude and (4) period of vibration. The tuning position of the controller is fourfold: (1) antecedent gain factor GE or GCE, (2) consequent gain factor GDU, (3) arrangement of the antecedent fuzzy labels and (4) arrangement of the control rules. The rules give an instance to the respective items of the controller in an effective order. The modified fuzzy PI controller realizes a good response of a stable process. However, because the GDU tuning becomes difficult for the unstable process, it is necessary to evaluate the stability of the process from the initial step response. The fuzzy PI controller is applied to the process whose initial step response converges with GDU tuning. The fuzzy PI controller with modified sampling time is applied to the process whose step response converges under the repeated application of the GDU tuning. The fuzzy PD controller is applied to the process whose step response never converges by the GDU tuning.

  • PDF

Response Characteristic of the Dual-frame Passive Control System with the Natural Period Difference between the Strength Resistant Core and Frame Structure (강도저항형 코어와 프레임 구조의 진동주기차를 이용한 듀얼프레임 제진시스템의 응답특성)

  • Kim, Tae Kyung;Choi, Kwang Yong;Oh, Sang Hoon;Ryu, Hong Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.273-282
    • /
    • 2015
  • In this study, shaking table test has been carried out for the dual frame passive control system for seismic performance verification of the proposed system. The proposed system was separated into two independent frameworks that are strength resistant core and frame structure by connecting to the damper. Moreover, the seismic performance improvement of the proposed system has been verified by comparing and analyzing the experimental results of the proposed system with an existing core system. As a result of the shaking table test, acceleration and displacement responses of dual-frame vibration control system are decreased than those of the existing strength resistant type core system. In the case of the core system, while the damage was concentrated on the column of first floor, the damage of the dual system was dispersed in each layer. The damage also was concentrated on the damper, almost no damage occurs to the structural members. It has been emphasized that installed dampers in the proposed dual system reduce the input energy of whole structure by absorbing seismic input energy, which leads overall system damage to be reduced.

OMA of model steel structure retrofitted with CFRP using earthquake simulator

  • Kasimzade, Azer A.;Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.689-697
    • /
    • 2017
  • Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Beams of the model steel structure are then retrofitted by using CFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of FRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of CFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 34.43% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.

The Study on Intraoral Pressure, Closure Duration, and VOT During Phonation of Korean Bilabial Stop Consonants (한국어 양순 파열음 발음시 구강내압과 폐쇄기, VOT에 대한 연구)

  • Pyo Hwa Young;Choi Hong Shik
    • Proceedings of the KSPS conference
    • /
    • 1996.10a
    • /
    • pp.390-398
    • /
    • 1996
  • Acoustic analysis study was performed on 20 normal subjects by speaking nonsense syllables composed of Korean bilabial stops(/p, $p^{*}$/, ph/) and their Preceding and/or following vowel /a/(that is, [pa, $p^{*}a$, pha, apa, $ap^{*}a$, apha]) with an ultraminiature pressure sensor in their mouths. Speech materials were phonated twice, once with a moderate voice, another time with a loud voice. The acoustic signal and intraoral pressure were recorded simultaneously on computer. By these procedures, we were to measure the intraoral pressure, closure duration and VOT of Korean bilabial stops, and to compare the values one another according to the intensity of phonation and the position of the target consonants. Intraoral pressure was measured by the peak intraoral pressure value of its wave; closure duration by the time interval between the onset of intraoral pressure build-up and the burst meaning the release of closure; Voice onset time(VOT) by the time interval between the burst and the onset of glottal vibration. Heavily aspirated bilabial stop consonant /ph/ showed the highest intraoral pressure value, unaspirated /p$^{*}$/, the second, slightly aspirated /p/, the lowest. The syllable initial bilabial stops showed higher intraoral pressure than word initial stops, and the value of loudly phonated consonants were higher than moderate consonants. The longest closure duration period was that of /$p^{*}$/ and the shortest, /p/, and the duration was longer in word initial position and in the moderate voice. In VOT, the order of the longest to shortest was /ph/, /p/, /$p^{*}$/, and the value was shorter when the consonant was in intervocalic position and when it was phonated with a loud voice.

  • PDF

The Study on Intraoral Pressure, Closure Duration and VOT During Phonation of Korean Bilabial Stop Consonants (한국어 양순 파열음 발음시 구강내압과 폐쇄기, VOT에 대한 연구)

  • 표화영;최홍식
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.7 no.1
    • /
    • pp.50-55
    • /
    • 1996
  • Acoustic analysis study was performed on 20 normal subjects by speaking nonsense syllables composed of Korean bilabial stops$(/P, P^{\star}, P^{h}/)$ and their preceding and/or following vowel /a/ (that is, $[pa, p^{\star}a, p^{h}a, apa, ap^{\star}a, ap^{h}a]$) with an ultraminiature pressure, sensor. in their mouths. Speech materials were phonated twice, once with a moderate voice, another time with a loud voice. The acoustic signal and intraoral pressure were recorded simultaneously on computer. By these procedures, we were to measure the intraoral pressure, closure duration and VOT of Korean bilabial stops, and to compare the values one another according to the intensity of phonation and the position of the target consonants. Intraoral pressure was measured by the peak intraoral pressure value of Its wave closure duration by the time interval between the onset of intraoral pressure build-up and the burst meaning the release of closure ; Voice onset time(VOT) on by the time interval between the burst and the onset or glottal vibration. Heavily aspirated bilabial stop consonant /$p^h$/ showed the highest intraoral pressure value, unaspirated /$p^{\star}$/, the second, slightly aspirated /P/, the lowest. The syllable initial bilabial stops showed higher intraoral pressure than word initial stops, and the value of loudly phonated consonants were higher than moderate consonants. The longest closure duration period was that of /$p^{\star}$/ and the shortest, /P/, and the duration was longer in word initial position and in the moderate voice. In VOT, the order of the longest to shortest was $/{p^h}/, /p/, /{p^\star}/$, and the value was shorer when the consonant was in intervocalic position and when it was phonated with a loud voice.

  • PDF

Dynamic Characteristics of Reinforced Concrete Axisymmetric Shell with Initial Imperfection (초기결함을 갖는 철근 콘크리트 축대칭 쉘의 동적 특성 -돔의 결함의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.77-85
    • /
    • 1999
  • In this study, a computer program considering initial imperfection of axisymmetric reinforced concrete shell which plastic deformation by large external loading was developed . Initial imperfection of dome was assumed as 'dimple type' which can be expressed as Wi=(Wo/h)(1-x$^2$)$^3$. The developed model applied to the analysis of dynamic response of axisymmetric reinforced concrete shell when it has initial imperfection. The initial imperfection of 0.0, -5.0, and 5cm and steel and steel layer ratio 0,3, and 5% were tested for numerical examples . The results can be summarized as follows ; 1. Dynmaic response of vertical deflection at dome crown showed slow increased if it has not inital imperfection . But the response showed relatively high amplitude when initial imperfection was inner directed (opposite direction to loading). Similar trends also appeared for different steel layer ratios. 2. Dynamic responses of radial displacement at the junction of dome and wall showed the highest amplitude when initial imperfection was inward directed (opposite direction to loading). The lowest amplitude occurred when initial imperfection was outward directed (same direction to loading). Vibration period also delayed for inward directed initial imperfection . These trends were obvious as steel layer ratio increasing. 3. The effects of imperfection for the dynamic response of radial displacement a the center of wall scarely appeared. The effects of initial imperfection of dome on the dynmaic response of the wall can be neglected. 4. Effect of steel on the dynmic response of axisymmetric shell structure was great when initial imperfection did not exist. And the effect of direction of initial imperfection (inward or outward) did not show big difference.

  • PDF

GFRP retrofitting effect on the dynamic characteristics of model steel structure

  • Tuhta, Sertac
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.223-231
    • /
    • 2018
  • Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Columns of the model steel structure are then retrofitted by using GFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of GFRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain Decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of GFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 33.916% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.

Seismic Design of Structures in Low Seismicity Regions

  • Lee, Dong-Guen;Cho, So-Hoon;Ko, Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.53-63
    • /
    • 2007
  • Seismic design codes are developed mainly based on the observation of the behavior of structures in the high seismicity regions where structures may experience significant amount of inelastic deformations and major earthquakes may result in structural damages in a vast area. Therefore, seismic loads are reduced in current design codes for building structures using response modification factors which depend on the ductility capacity and overstrength of a structural system. However, structures in low seismicity regions, subjected to a minor earthquake, will behave almost elastically because of the larger overstrength of structures in low seismicity regions such as Korea. Structures in low seismicity regions may have longer periods since they are designed to smaller seismic loads and main target of design will be minor or moderate earthquakes occurring nearby. Ground accelerations recorded at stations near the epicenter may have somewhat different response spectra from those of distant station records. Therefore, it is necessary to verify if the seismic design methods based on high seismicity would he applicable to low seismicity regions. In this study, the adequacy of design spectra, period estimation and response modification factors are discussed for the seismic design in low seismicity regions. The response modification factors are verified based on the ductility and overstrength of building structures estimated from the farce-displacement relationship. For the same response modification factor, the ductility demand in low seismicity regions may be smaller than that of high seismicity regions because the overstrength of structures may be larger in low seismicity regions. The ductility demands in example structures designed to UBC97 for high, moderate and low seismicity regions were compared. Demands of plastic rotation in connections were much lower in low seismicity regions compared to those of high seismicity regions when the structures are designed with the same response modification factor. Therefore, in low seismicity regions, it would be not required to use connection details with large ductility capacity even for structures designed with a large response modification factor.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.