• Title/Summary/Keyword: The mobile robot

Search Result 2,533, Processing Time 0.032 seconds

A Study on Map Building of Mobile Robot Using RFID Technology and Ultrasonic Sensor (초음파센서와 RFID 시스템을 이용한 이동로봇의 맵 빌딩에 관한 연구)

  • Lee, Do-Kyoung;Im, Jae-Sung;Kim, Sang-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.239-244
    • /
    • 2010
  • This paper is to present map building of mobile robot using RFID (Radio Frequency Identification) technology and ultrasonic sensor. For mobile robot to perform map building, the mobile robot needs its localization and accurate driving in space. In this reason, firstly, kinematic modeling of mobile robot under non-holonomic constrains is introduced. Secondly, based on this modeling, a tracking controller is designed for tracking a given path based on backstepping method using Lyapunov function. The Lyapunov function is also introduced for proving the stability of the designed tracking controller. Thirdly, 2D map building is performed by RFID system, mobile robot system and ultrasonic sensors. The RFID mobile robot system is composed of DC motor, encoder, ultra sonic sensor, digital compass, RFID receiver and RFID antenna. Finally, the path tracking simulation results and map building experimental results are presented to show the effectiveness of the designed controller.

Control of a mobile robot supporting a task robot on the top

  • Lee, Jang M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.1-7
    • /
    • 1996
  • This paper addresses the control problem of a mobile robot supporting a task robot with needs to be positioned precisely. The main difficulty residing in the precise control of a mobile robot supporting a task robot is providing an accurate and stable base for the task robot. That is, the end-plate of the mobile robot which is the base of the task robot can not be positioned accurately without external position sensors. This difficulty is resolved in this paper through the vision information obtained from the camera attached at the end of a task robot. First of all, the camera parameters were measured by using the images of a fixed object captured by the camera. The measured parameters include the rotation, the position, the scale factor, and the focal length of the camera. These parameters could be measured by using the features of each vertex point for a hexagonal object and by using the pin-hole model of a camera. Using the measured pose(position and orientation) of the camera and the given kinematics of the task robot, we calculate a pose of the end-plate of the mobile robot, which is used for the precise control of the mobile robot. Experimental results for the pose estimations are shown.

  • PDF

Technical Trend of Mobile Robot According to Kinematic Classification (이동형 로봇의 기구학적 분류에 따른 기술동향)

  • Jeong, Chan Se;Park, Kyoung Taik;Yang, Soon Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1043-1047
    • /
    • 2013
  • Smart mobile robot is a kind of Intelligent Robot. It means that operates manipulate autonomously and recognize the external environment. Smart mobile robot moving mechanism has many type and the type depend on the robot shape or purpose. Recently, research on the moving mechanism has been actively in many area. The moving mechanism divided to wheel type, crawler type, walking type, other type and the moving type choose by the kind of robot or the purpose robot. In this paper, describe the kind of moving mechanism on the smart mobile robot and the technical trend of moving mechanism of smart mobile robot.

Implementation of JPEG and Relay Server Using The Robot Control UI Program (JPEG 방식과 Relay Server를 이용한 로봇제어 UI Program 개발에 관한 연구)

  • Park, Hyun-Kyung;Park, Seok-Il;Kil, Se-Kee;Hong, Seong-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1101-1104
    • /
    • 2005
  • As intelligence of robot is developed, consumer of robot changes by ordinary people. Intelligent service robot is produced to a target of ordinary people. It is risen that need the most service robot business. Among the control mobile robot because using network by real time. Do to appear on mobile phone LCD screen being transmitted image from device that acquire transmit of mobile phone user interface development and real time mobile robot in this study. Use the BREW that is Qualcomm's Mobile platform for mobile phone user interface development. Mobile phone JPEG compression function chooses excellent camera phone and display transmit image which send connection setting screen and mobile robot on LCD screen by real time. At the same time, materialize to make screen that can process button input that can control transfer of robot. Also, Relay Server used to help processing of protocol to control direction of mobile robot.

  • PDF

Real-Time Obstacle Avoidance of Autonomous Mobile Robot and Implementation of User Interface for Android Platform (자율주행 이동로봇의 실시간 장애물 회피 및 안드로이드 인터페이스 구현)

  • Kim, Jun-Young;Lee, Won-Chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.237-243
    • /
    • 2014
  • In this paper we present an real-time obstacle avoidance technique of autonomous mobile robot with steering system and implementation of user interface for mobile devices with Android platform. The direction of autonomous robot is determined by virtual force field concept, which is based on the distance information acquired from 5 ultrasonic sensors. It is converted to virtual repulsive force around the autonomous robot which is inversely proportional to the distance. The steering system with PD(proportional and derivative) controller moves the mobile robot to the determined target direction. We also use PSD(position sensitive detector) sensors to supplement ultrasonic sensors around dead angle area. The mobile robot communicates with Android mobile device and PC via Ethernet. The video information from CMOS camera mounted on the mobile robot is transmitted to Android mobile device and PC. And the user can control the mobile robot manually by transmitting commands on the user interface to it via Ethernet.

Development of Autonomous Mobile Robot with Speech Teaching Command Recognition System Based on Hidden Markov Model (HMM을 기반으로 한 자율이동로봇의 음성명령 인식시스템의 개발)

  • Cho, Hyeon-Soo;Park, Min-Gyu;Lee, Hyun-Jeong;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.726-734
    • /
    • 2007
  • Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.

Reasonable Hardware Design Methods for 2-Wheeled Mobile Robots : Based on Segway Type Mobile Robots (2륜 이동로봇의 합리적인 하드웨어 설계 노하우 : 세그웨이를 중심으로)

  • Joh, Jung-Woo;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.109-111
    • /
    • 2009
  • In this paper, we discuss how to design 2-wheeled mobile robot hard wares as reasonable and practical as possible. A segway type mobile robot consists of 2 wheels only, placed in parallel rather than horizon. 2-wheeled mobile robots make you overcome high cost and time consuming maintenance procedures of the robot by reducing the number of robot hardwares. The most challenging thing in a 2-wheeled mobile robot that has many more valid virtues than the traditional mobile robots is to make it balance itself whenever it stands still or goes forward. But balancing itself is not an easy matter and there are many researches and experiments on this issue. When researchers test theories on 2-wheeled mobile robots to improve its self balancing performance, they should consider how to design hard wares of that mobile robot. No matter how great those new theories are, if a testbed for those theories is not suitable, performance output would be poor and meaningless. In this point of view, to design a proper 2-wheeled mobile robot as a testbed is a very important issue with development of new theories. So we define 4 guide lines to design segway type mobile robots reasonably; about motor, battery, and MCU selection and shock-proof design with robust motor setting.

  • PDF

An Efficient Localization of Mobile Robot in RFID Sensor Space (RFID 센서 공간에서의 모바일 로봇의 효율적인 위치 인식)

  • Choi, Byoung-Suk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • This paper presents an efficient localization scheme for an indoor mobile robot using RFID tags on the floor. The mobile robot carries an RFID reader at the bottom, which reads the RFID tags on the floor to localize the mobile robot. Each RFID tar on the floor stores its own absolute position which is used to calculate the position and velocity of the mobile robot. Locating the RFID tags on the floor, which constructs an intelligent sensor space, may require several factors to be considered: economics feasibility and accuracy. In this paper, the optimal allocation scheme of the RFID tags on the floor to satisfy the accuracy constraint has been proposed and verified by the experiments. Based on the RFID reading, the mobile robot navigation has been successfully demonstrated to avoid obstacles and to reach the goal within a pre-specified time.

Integrated Path Planning and Collision Avoidance for an Omni-directional Mobile Robot

  • Kim, Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.210-217
    • /
    • 2010
  • This paper presents integrated path planning and collision avoidance for an omni-directional mobile robot. In this scheme, the autonomous mobile robot finds the shortest path by the descendent gradient of a navigation function to reach a goal. In doing so, the robot based on the proposed approach attempts to overcome some of the typical problems that may pose to the conventional robot navigation. In particular, this paper presents a set of analysis for an omni-directional mobile robot to avoid trapped situations for two representative scenarios: 1) Ushaped deep narrow obstacle and 2) narrow passage problem between two obstacles. The proposed navigation scheme eliminates the nonfeasible area for the two cases by the help of the descendent gradient of the navigation function and the characteristics of an omni-directional mobile robot. The simulation results show that the proposed navigation scheme can effectively construct a path-planning system in the capability of reaching a goal and avoiding obstacles despite possible trapped situations under uncertain world knowledge.

Human Centered Robot for Mutual Interaction in Intelligent Space

  • Jin Tae-Seok;Hashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.246-252
    • /
    • 2005
  • Intelligent Space is a space where many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents, which provide human with services. To realize this, human and mobile robots have to approach each other as much as possible. Moreover, it is necessary for them to perform interactions naturally. It is desirable for a mobile robot to carry out human affinitive movement. In this research, a mobile robot is controlled by the Intelligent Space through its resources. The mobile robot is controlled to follow walking human as stably and precisely as possible. In order to follow a human, control law is derived from the assumption that a human and a mobile robot are connected with a virtual spring model. Input velocity to a mobile robot is generated on the basis of the elastic force from the virtual spring in this model. And its performance is verified by the computer simulation and the experiment.