• Title/Summary/Keyword: The cKG equation

Search Result 111, Processing Time 0.027 seconds

THE ($\frac{G'}{G}$)- EXPANSION METHOD COMBINED WITH THE RICCATI EQUATION FOR FINDING EXACT SOLUTIONS OF NONLINEAR PDES

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.351-367
    • /
    • 2011
  • In this article, we construct exact traveling wave solutions for nonlinear PDEs in mathematical physics via the (1+1)- dimensional combined Korteweg- de Vries and modified Korteweg- de Vries (KdV-mKdV) equation, the (1+1)- dimensional compouned Korteweg- de Vries Burgers (KdVB) equation, the (2+1)- dimensional cubic Klien- Gordon (cKG) equation, the Generalized Zakharov- Kuznetsov- Bonjanmin- Bona Mahony (GZK-BBM) equation and the modified Korteweg- de Vries - Zakharov- Kuznetsov (mKdV-ZK) equation, by using the (($\frac{G'}{G}$) -expansion method combined with the Riccati equation, where G = $G({\xi})$ satisfies the Riccati equation $G'({\xi})=A+BG^2$ and A, B are arbitrary constants.

The Influence of Dietary Characteristics on the Milk Quantity and Quality of Riverine Buffaloes: Estimate of the Energy/Protein Requirements, for a Medium-high Production, in the First Ninety Days of Lactation

  • Terramoccia, S.;Bartocci, A.;Giovanni, S. Di;Bartocci, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.335-340
    • /
    • 2012
  • The data used came from two trials undertaken under the same climatic conditions (spring-summer). In both trials pluriparious buffaloes were utilized similar in weight, body condition score, and milk production from the previous year. From the first trial the data used was from the sub-period 23-88 DIM provided by seven animals fed ad libitum with diet A (6.69 MJ/kg DM; 158.30 g/kg of crude protein) with a forage/concentrate ratio of 48/52. From the second trial the data used was from the sub-period 33-90 DIM provided by seven animals fed ad libitum with diet B (6.63 MJ/kg DM; 179.50 g/kg of crude protein) and by seven animals fed ad libitum with diet C (5.99 MJ/kg DM; 155.40 g/kg of crude protein), each of the diets had the same forage/concentrate ratio (53/47). A significant difference was found in milk production between group B and C (13.08 vs. 11.56 kg/d, p<0.05), an intermediate production (12.10 kg/d) was noted in group A. A significant difference was found between fat (76.58 vs. 69.24 g/kg, p<0.05), protein (46.14 vs. 43.16 g/kg, p<0.05) and casein (39.94 vs. 34.98 g/kg, p<0.05) of the milk of group B with respect to group A. The milk of group C gave fat values (71.80 g/kg), protein (45.52 g/kg) and casein (39.06 g/kg) statistically equal to those of group B. The milk of groups B and C, in respect to the milk of group A, gave values of $K_{20}$ (1.77, 1.82 vs. 3.68 min, p<0.05), statistically lower and values of $A_{30}$ (48.28, 47.27 vs. 40.64 mm, p<0.05) statistically higher. Two simple linear regressions were calculated where the independent variable (x) was the daily standardized milk production, the dependent variable (y) or the daily intake of net energy or crude protein. Equation 1) NE (MJ/d) = 74.4049+2.8308${\times}$kg of normalized milk; equation 2) CP (kg/d) = 1.4507+0.1085${\times}$kg of normalized milk, both the equations were significant (p<0.05) with determination coefficients of 0.58 and 0.50 respectively. For a production of normalized milk that varies from 9 to 13 kg, the respective energy-protein concentrations fluctuate from 6.09 to 6.78 MJ/kg DM and from 148.00 to 174.46 g/kg DM.

Effects of dietary forage-to-concentrate ratio on nutrient digestibility and enteric methane production in growing goats (Capra hircus hircus) and Sika deer (Cervus nippon hortulorum)

  • Na, Youngjun;Li, Dong Hua;Lee, Sang Rak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.967-972
    • /
    • 2017
  • Objective: Two experiments were conducted to determine the effects of forage-to-concentrate (F:C) ratio on the nutrient digestibility and enteric methane ($CH_4$) emission in growing goats and Sika deer. Methods: Three male growing goats (body weight $[BW]=19.0{\pm}0.7kg$) and three male growing deer ($BW=19.3{\pm}1.2kg$) were respectively allotted to a $3{\times}3$ Latin square design with an adaptation period of 7 d and a data collection period of 3 d. Respiration-metabolism chambers were used for measuring the enteric $CH_4$ emission. Treatments of low (25:75), moderate (50:50), and high (73:27) F:C ratios were given to both goats and Sika deer. Results: Dry matter (DM) and organic matter (OM) digestibility decreased linearly with increasing F:C ratio in both goats and Sika deer. In both goats and Sika deer, the $CH_4$ emissions expressed as g/d, g/kg $BW^{0.75}$, % of gross energy intake, g/kg DM intake (DMI), and g/kg OM intake (OMI) decreased linearly as the F:C ratio increased, however, the $CH_4$ emissions expressed as g/kg digested DMI and OMI were not affected by the F:C ratio. Eight equations were derived for predicting the enteric $CH_4$ emission from goats and Sika deer. For goat, equation 1 was found to be of the highest accuracy: $CH_4(g/d)=3.36+4.71{\times}DMI(kg/d)-0.0036{\times}neutral$ detergent fiber concentrate (NDFC,g/kg)+$0.01563{\times}dry$ matter digestibility (DMD,g/kg)-$0.0108{\times}neutral$ detergent fiber digestibility (NDFD, g/kg). For Sika deer, equation 5 was found to be of the highest accuracy: $CH_4(g/d)=66.3+27.7{\times}DMI(kg/d)-5.91{\times}NDFC(g/kg)-7.11{\times}DMD(g/kg)+0.0809{\times}NDFD(g/kg)$. Conclusion: Digested nutrient intake could be considered when determining the $CH_4$ generation factor in goats and Sika deer. Finally, the enteric $CH_4$ prediction model for goats and Sika deer were estimated.

STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C*-ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION

  • Eghbali, Nasrin;Hazrati, Somayeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.101-113
    • /
    • 2016
  • In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.

Estimating of Pollutant Load at Paddy Field Area (광역논에서의 오염물질 부하량 산정)

  • Kim, Byoung-Hee;Yoon, Chun-Gyeong;Hwang, Ha-Sun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.509-512
    • /
    • 2001
  • In this study, pollutant load from paddy field was estimated by regression equation from 5 to 8 in 2001. During study period, total rainfall was 511.3mm and runoff discharge was 968.71mm. Regression equation between flow rate(m3/s) and pollutant loading rate(g/s) is exponential relationship. For site 1, coefficient of determination (R2) for $COD_{cr}$, T-P, T-N were 0.7068, 0.8441, 0.6806 respectively and site 2, 0.9369, 0.8855, 0.4262 respectively. Considering unit loads, Jun was the highest valus as 13.85 $COD_{c}kg/km2/day$, 0.24 T-Pkg/km2/day, 1.22 T-Nkg/km2/day. Until study period, total $COD_{cr}$ load estimated regression equation is 19.32kg/km2/day and, T-P, T-N were 0.264, 1.88 respectively

  • PDF

Prediction of Carcass Fat, Protein, and Energy Content from Carcass Dry Matter and Specific Gravity of Broilers

  • Wiernusz, C.J.;Park, B.C.;Teeter, R.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.42-48
    • /
    • 1999
  • Three experiments were conducted to develop and test equations for predicting carcass composition. In the first study using 52 d-old Cobb ${\times}$ Cobb male broilers, twenty four carcasses were selected from 325 processed birds based upon visual appraisal for abdominal fat (low, medium, high) and assayed for specific gravity (SG), dry matter (DM), fat, protein, and ash. In experiment 2, 120 birds were fed rations containing 2 caloric densities (2,880 and $3,200kcal\;ME_n/kg$ diet) and assayed as described above on weeks 2,3,4,5, and 6. Carcass fat was elevated (p < 0.05) with increased caloric density. In both studies predictive variables were significantly correlated with chemically determined carcass fat, protein, and ash contents. Pooled across the 2 studies, data were used to form SG, DM, and or age based equations for predicting carcass composition. Results were tested in experiment 3, where 576 birds reared to 49-d consumed either 2,880, 3,200, or $3,574kcal\;ME_n/kg$ diet while exposed to constant $24^{\circ}C$ or cycling 24 to $35^{\circ}C$ ambient temperatures. Both dietary and environmental effects impacted (p < 0.05) carcass composition. The fat content analyzed chemically was enhanced from 12.4 to 15.7%, and predicted fat was also elevated from 13.4 to 14.8% with increasing caloric density. Heat distress reduced (p < 0.05) analyzed carcass protein (18.9 vs 18.3%) and predicted protein (18.2 vs 17.5%). Predicted equation values for carcass fat, protein, ash, and energy were correlated with the chemically analyzed values at r=0.96, 0.77, 0.86, and 0.79, respectively. Results suggest that prediction equations based on DM and SG may be used to estimate carcass fat, protein, ash, and energy contents of broilers consuming diets that differ in caloric density (2,800 to $3,574kcal\;ME_n/kg$) and for broilers exposed to either constant ($24^{\circ}C$) or cycling high (24 to $35^{\circ}C$) ambient temperatures during 49-d rearing period tested in the present study.

Growth of Plant and Changes in Phosphorus Availability in Phosphorus Accumulated Soils (인 축적 토양에서 작물의 생장과 토양 유효인 함량의 경시적 변화)

  • Kim, Sheng-Ai;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.261-267
    • /
    • 1999
  • Pot experiments were conducted to evaluate the phosphorus (P) availability with cropping in soils where P were highly accumulated. Bray 1-P contents of the used three soils were 584, 695 and $1043P\;mg\;kg^{-1}$, respectively. Corn ${\rightarrow}$ Chinese cabbage ${\rightarrow}$ Chinese cabbage ${\rightarrow}$ corn were sequentially grown from 1996 to 1998. P fertilizer was applied at three levels of 0 (P0), recommended application rate (P1), and double of recommended application rate (P2). At the end of each crop growth, available P content was determined by methods of Bray 1-P, Olsen-P and Lancaster-P. The growth of crops were not significantly affected by the rates of P applications. The relative yields of PO treatment were more than 88% of P1 treatment. The recoveries of added phosphorus were relatively low due to the high content of available phosphorus in soils. Although available phosphorus contents decreased through cropping, the concentration of soil available phosphorus was maintained high level even after the final cropping. In the case of P0 treatment in the three soils, the residual concentration was in the range of $410{\sim}610mg\;kg^{-1}$ for Bray 1-P, $284{\sim}410mg\;kg^{-1}$ for Olsen-P and $368{\sim}524mg\;kg^{-1}$ for Lancaster-P. The amount of soil available phosphorus decreased during the experiments was linearly regressed with high significance to the amount of P taken up by crops. The regressions of soil 1 as follow, Bray 1-P : y=149.7x=102.7, Lancaster-P : y=209.2x-140.2, Olsen-P: y=60.8x=19.9. The decrease rate of available phosphorus in the P0 treatment with cropping was described by an equation of first-order chemical reaction. The equation of soil1 was as follow: Bray 1-P: In(C)= -0.12N + 6.96 r=-0.991, Lancaster-P: In(C)= -0.14N = 6.88 r= -0.938, Olsen-P: In(C)= -0.07N = 6.37 r= -0.959. The rate constants seemed to be affected by ply, sand and silt content, and exchangeable $Ca^{2+}$ concentration. The times of cropping needed to reduce the content of available P to half of the initial or to the index level could be predicted by using that equation.

  • PDF

Residual Pattern of Procymidone and Chlorothalonil in Grape During the Period of Cultivation and Storage (포도의 재배 및 저장기간 중의 Procymidone 및 Chlorothalonil의 잔류량변화)

  • Ko, Kwang-Yong;Kim, Kum-Hee;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.47-51
    • /
    • 2004
  • In order to know the residual pattern of pesticides and predict to the degradation period until below MRL we experimented procymidone and chlorothalonil for grape which were the most detected pesticide in grape by NAQS(National Agricultural product Quality management Service) survey. In this experiment we sprayed those pesticides 10 days before harvest and analyzed 0, 1, 2, 3, 5, 7, 10 day sample to establish logical equation and to calculate $DT_{50}$. Also the same day samples stored at $4^{\circ}C$ and $20^{\circ}C$, which were compared their degradation patterns. During the cultivating period, the residue amount of procymidone was changed from 1.85 mg/kg (0 day) to 0.33 mg/kg (10 day), $DT_{50}$ was 3.5 days, and chlorothalonil was changed from 5.5 mg/kg (0 day) to 3.49 mg/kg (10 day), $DT_{50}$ was 4.4 days. During the storage period, $DT_{50}$ of procymidone and chlorothalonil at $4^{\circ}C$ were 10.5 and 7.6 days, and 6.3 and 6.1 days at $20^{\circ}C$, respectively.

Size Effect for Flexural Compressive Strength of Concrete (콘크리트의 휨 압축강도의 크기효과)

  • Kim, Jin-Keun;Yi, Seong-Tae;Yang, Eun-Ik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • When the ultimate strength of a concrete flexural member is evaluated, the effect of member size is usually not considered. For various types of loading, however, the strength always decreases with the increment of member size. In this paper the size effect of a flexural compression member is investigated by experiments. For this purpose, a series of C-shaped specimens subjected to axial compressive load and bending moment was tested using three different sizes of specimens with a compressive strength of 528 kg/$cm^2$. According to test results the size effect on flexural compressive strength was apparent, and more distinct than that for uniaxial compressive strength of cylinders. Finally a model equation was derived using regression analyses with experimental data.

Study on the Thermal Storage Characteristics of Phase Change Materials for Greenhouse Heating (온실보온(溫室保溫)을 위한 상변화(相變化) 물질(物質)의 축열특성연구(蓄熱特性硏究))

  • Song, Hyun-Kap;Ryou, Young-Sun;Kim, Young-Bok
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.65-78
    • /
    • 1993
  • An overdose of fossil fuel for greenhouse heating causes not only the high cost and low quality of agricultural products, but also the environmental pollution of farm village. To solve these problems it is desirable to maximize the solar energy utilization for the heating of greenhouse in winter season. In this study phase change materials were selected to store solar energy concentratively for heating the greenhouse and their characteristics of thermal energy storage were analyzed. The results were summarized as follows. The organic $C_{28}H_{58}$, and the inorganic $CH_3COONa{\cdot}3H_2O\;and\;Na_2SO_4{\cdot}10H_2O$ were selected as low temperature latent heat storage materials. The equation of critical radius was derived to define the generating mechanism of the maximum latent heat of phase change materials. The melting point of $C_{28}H_{58}$ was $62^{\circ}C$, and the latent heat was $50.0{\sim}52.0kcal/kg$. The specific heat of liquid and solid phase was $0.54{\sim}0.69kcal/kg^{\circ}C$ and $0.57{\sim}0.75kcal/kg^{\circ}C$ respectively. The melting point of $CH_3COONa{\cdot}3H_2O$ was $61{\sim}62^{\circ}C$, the latent heat was $64.9{\sim}65.8$ kcal/kg and the specific heat of liquid and solid phase was respectively $0.83kcal/kg^{\circ}C$ and $0.51{\sim}0.52kcal/kg^{\circ}C$. The melting point of $Na_2SO_4{\cdot}10H_2O$ was $30{\sim}30.9^{\circ}C$, the latent heat was 53.0 kcal/kg and the specific heat of liquid and solid phase was respectively $0.78{\sim}0.89kcal/kg^{\circ}C$ and $0.50{\sim}0.7kcal/kg^{\circ}C$ When the urea of 21.85% was added to control the melting point of $Na_2SO_4{\cdot}10H_2O$ and the phase change cycles were repeated from 0 to 600, the melting point was $16.7{\sim}16.0^{\circ}C$ and the latent heat was $36.0{\sim}28.0kcal/kg^{\circ}C$.

  • PDF