• Title/Summary/Keyword: The adhesion strength

Search Result 1,338, Processing Time 0.026 seconds

Parametric Study on Test Method for Pull-off Strength of FRP Composite Material used in Strengthening RC Members (FRP 복합체의 콘크리트에 대한 접착강도 시험방법 변수 연구)

  • Choi, Ki-Sun;You, Young-Chan;Lee, Han-Seung;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.222-225
    • /
    • 2006
  • Pull-off test is widely used to evaluate bond performance between concrete and FRP composite. However, reliability of experiment result declines due to many difference between test methods of each national standards. This study analyzed problems of various existing test methods for pull-off test and suggested standardized test method. In addition, since tensile strength of concrete is smaller than bond strength of epoxy resin, maximum bond strength of epoxy resin shall be limited within tensile strength of concrete. Alternative testing method, therefore, which decrease FRP adhesion areas than concrete adhesion areas is suggested to widen test range of bond strength in pull-off test. In the experimental results, bond performance can be estimated up to two times of tensile strength of concrete by reducing FRP adhesion areas by 1/3.

  • PDF

Effect of 1,6-Hexamethylenediamine Content on the Properties/Adhesive Strength of EVA/Itaconated EPDM Blend Foams (I) (헥사메텔렌 디아민이 EVA/Itaconated EPDM 블렌드 발포체의 물성 및 접착강도에 미치는 영향 (I))

  • Jung, Hyun-Ji;Lee, Young-Hee;Kim, Jung-Soo;Lee, Dong-Jin;Kim, Sung Yeol
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.107-116
    • /
    • 2018
  • Simplification of the manufacturing process in shoe making is essential to improve productivity and reduce production costs. To improve the adhesion of EVA foam used as a midsole, EVA/itaconated EPDM(EPDM-g-IA)(80/20wt%) blend was prepared using Torque Rheometer-Plasti-Corder, and 1,6-hexamethylenediamine/crosslinking agent/foaming agent/additive were mixed, followed by amidation reaction and foaming to prepare EVA/EPDM-g-IA foam for shoe midsole. In this study, we investigate the effect of the content of 1,6-hexamethylenediamine(0, 0.5, 1.0, 2.0, 3.0) on the mechanical properties, water-contact angle and adhesion of EVA/itaconated EPDM foam. As the content of 1,6-hexamethylenediamine increased, mechanical properties such as tensile strength, tear strength, tensile elastic modulus, hardness, and water-contact angle were lowered, but elongation at break and compression set(%) were increased. Both normal type and non-UV type adhesive strength increased with increasing diamine content. In particular, it was found that the adhesion strength of the non-UV type adhesion increased sharply with increasing diamine content. As a result, an adherend rupture occurs in a foam sample having a content of 1,6-hexamethylenediamine of 3phr. From this, it can be seen that the EVA/itaconated EPDM foam for shoe midsoles, which can be used for non-UV adhesion without primer and UV treatments, have been developed.

Adhesion properties and Breakdown behaviors of LSR Interface (LSR 계면의 접착특성 및 절연파괴거동)

  • Yoon, Seung-Hoon;Nam, Jin-Ho;Lee, Gun-Ju;Choi, Soo-Geol;Shin, Doo-Sung;Ji, Eung-Seo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.232-235
    • /
    • 2002
  • Recently developed liquid silicone rubber (LSR) can be cured by platinum catalyzed additional hydrosilylation mechanism and has the advantage of no byproduct compared to traditional millable peroxide curing silicone rubber. We investigated the characteristics of dielectric breakdown of silicone rubber and adhesion properties between semi-conductive LSR and insulating LSR for high voltage application of pre-molded joint (PMJ). In order to understand the dielectric breakdown characteristics, we used the sheet samples and the paired type rogowski insert electrode system. The breakdown strength and adhesion strength of LSR (E-3) were superior to those of several silicone rubbers. Adhesion strength could be improved by curing at high temperature without post-curing process or enhanced by post-curing process. When LSR (E-3) was cured at $(150^{\circ}C{\times}10min$ semi-conductive )${\times}$ ($175^{\circ}C{\times}10min$ insulation), it showed the high breakdown strength with low standard deviation, and good adhesion strength. In this results, we could apply this process to the fabrication of PMJ without post-curing.

  • PDF

Study on the Thermal Properties and Adhesion Strength of Amorphous Polyalphaolefins/Petroleum Resin Blonds as a Hot Melt Adhesive (핫 멜트 접착제로 사용되는 비 결정성 올레핀 수지/석유수지 블렌드의 열적 성질 및 접착성에 관한 연구)

  • 홍인오;김환기;강호종
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.513-519
    • /
    • 2000
  • The effect of petroleum resin as a tackifier for polyalphaolefin (APAO) hot melt adhesive on thermal properties, crystallinity and adhesion strength was investigated. The presence of petroleum resin resulted in the melting temperature decrease in APAO/petroleum blend, especially, in APAO with low ethylene content/C$_{5}$ petroleum blend. It was also found that petroleum resin caused the decrease of crystallinity regardless of ethylene content in APAO. The maximum adhesion strength was found to be at 50/50 (APAO/petroleum) composition. $C_{5}$ resin was more effective to increase adhesion strength than $C_{9}$ for APAO with high ethylene content. In addition, it was found that the adhesion strength was improved with the decrease of crystallinity in APAO/petroleum resin hot melts.

  • PDF

Measurement of Adhesion Strength between Oxidized Cu-based Leadframe and EMC (산화처리된 구리계 리드프레임과 EMC 사이의 접착력 측정)

  • Lee, Ho-Young;Yu, Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.992-999
    • /
    • 1999
  • Due to the inherently poor adhesion strength of Cu-based leadframe/EMC(Epoxy Molding Compound) interface, popcorn-cracking phenomena of thin plastic packages frequently occur during the solder reflow process. In this study, in order to enhance the adhesion strength of Cu-based leadframe/EMC interface, brown-oxide layer was formed on the leadframe surface by immersing of leadframe sheets in hot alkaline solution, and the adhesion strength of leadframe/EMC interface was measured by using SDCB(Sandwiched Double Cantilever Beam) and SBN(Sandwiched Brazil-Nut) specimens. Results showed that brown oxide treatment of leadframe introduced fine acicular CuO crystals on the leadframe surface and improved the adhesion strength of leadframe/EMC interface. Enhancement of adhesion strength was directly related to the thickening kinetics of oxide layer. This might be due to the mechanical interlocking of fine acicular CuO crystals into EMC.

  • PDF

A Study on the Improvement of Adhesion according to the Process Variables of Ion Beam in the Cu/Polyimide Thin Film (이온빔의 공정변수에 따른 Cu/Polyimide 박막의 접착력향상에 관한 연구)

  • Shin Youn-Hak;Kim Myung-Han;Choi Jae-Ha
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.458-464
    • /
    • 2005
  • In microelectronics packaging, the reliability of the metal/polymer interfaces is an important issue because the adhesion strength between dissimilar materials is often inherently poor. The modification of polymer surfaces by ion beam irradiation and rf plasma is commonly used to enhance the adhesion strength of the interface. T-peel strengths were measured using a Cu/polyimide system under varying $N_2^+$ ion beam irradiation conditions for pretreatment. The measured T-peel strength showed reversed camel back shape regarding the fixed metal-layer thickness, which was quite different from the results of the 90° peel test. The elementary analysis suggests that the variation of the T-peel strength is a combined outcome of the plastic bending work of the metal and polymer strips. The results indicate that the peel strength increases with $N_2^+$ ion beam irradiation energy at the fixed metal-layer thickness.

Covulcanization and Ozone resistance for Unsaturated and Saturated Rubbers (불포화 고무와 포화 고무의 공가류 및 내오존성)

  • Lim, Won-Woo;Jung, Il-Taek;Han, Min-Hyun
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.32-38
    • /
    • 2001
  • Effects of the ratio of rubber composition on covulcanization and ozone resistance were studied in this study. Specimens used in this study were rubber compounds(specimen-A) blended with various ratio of NR, SBR, BR, IIR, and EPDM, unsaturated rubber compounds(specimen-B) with NR/BR/SBR, and saturated rubber compounds(specimen-C) with NR/IIR/EPDM. PAD adhesion specimen was prepared from vulcanizing specimen-A and B, and specimen-A and C, respectively. Using same adhesion specimen, peel strength was measured and tested ozone resistance. In specimen-A, peel strength was higher with increasing NR ratio for NR and BR contained blends. In other specimen-A containing NR and SBR, the peel strength was also increased with increasing SBR ratio. NR/BR/IIR/EPDM rubber compounds had also better adhesion property than NR/SBR/IIR/EPDM compounds. As more unsaturated rubber was blended, the peel strength was higher but ozone resistance was worse. Optimum ratio of unsaturated and saturated rubbers for the peel strength and ozone resistance was 60/40.

  • PDF

The Effects of Plasma Treatments on the Surface Energy of the Polycarbonates and on the Adhesion Strength of the Cu Film/Polycarbonate Interface (플라즈마 표면처리에 의한 폴리카보네이트의 표면에너지 및 구리박막과의 접착력 변화에 관한 연구)

  • Cho Byeong-Hoon;Lee Won-Jong;Park Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.745-750
    • /
    • 2005
  • Polycarbonates are widely used as housing materials of electronic handsets. Since the polycarbonate is electrically insulating, there should be a conducting layer on the polycarbonate for EMI shielding. In this study, we sputter deposited Cu films on the polycarbonate substrates for EMI shielding. Plasma treatments of polycarbonates were used to increase the adhesion strength of the Cu film/polycarbonate interface. The surface energy of the polycarbonate was greatly increased from $30mJ/m^2 \;to\; 65mJ/m^2$ by a 200 W $O_2$ plasma treatment for 10s. It is thought that this is because of the ion bombardment. The adhesion strength of the sputter deposited Cu film to the polycarbonate was quantitatively measured by a 4 point bending tester. A moderate plasma surface treatment of the polycarbonate increased the Cu film/polycarbonate adhesion strength by $30\%$. The EMI shielding efficiency of the sputter deposited $10{\mu}m$ Cu lam on the polycarbonate showed 90dB in the range of 100MHz to 1000MHz.

Adhesion and Interface Chemical Reactions of Cu/CuO/Polyimide System (Cu/CuO/Polyimide 시스템의 접착 및 계면화학 반응)

  • Lee, K.W.;Chae, H.C.;Choi, C.M.;Kim, M.H.
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.61-67
    • /
    • 2007
  • The magnetron reactive sputtering was adopted to deposit CuO buffer layers on the polyimide surfaces for increasing the adhesion strength between Cu thin films and polyimide, varying $O_2$ gas flow rate from 1 to 5 sccm. The CuO oxide was formed through all the $O_2$ gas flow rates of 1 to 5 sccm, showing the highest value at the 3 sccm $O_2$ gas flow rate. The XPS analysis revealed that the $Cu_2O$ oxide was also formed with a significant ratio during the reactive sputtering. The adhesion strength is mainly dependent on the amount of CuO in the buffer layers, which can react with C-O-C or C-N bonds on the polyimide surfaces. The adhesion strength of the multi-layered Cu/buffer layer/polyimide specimen decreased linearly as the heating temperature increased to $300^{\circ}C$, even though there showd no significant change in the chemical state at the polyimide interface. This result is attributed to the decrease in surface roughness of deposited copper oxide on the polyimide, when it is heated.

Strength Properties of CLC According to Additional Ratio of Polymer (폴리머 첨가율에 따른 CLC의 강도 특성)

  • Lee, Jeong-Taek;Lee, Chang- Woo;Hwang, Woo-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.83-84
    • /
    • 2022
  • Zero-energy construction is being emphasized due to environmental pollution. However, in the case of external insulation using organic insulation with good insulation performance, there are many studies on inorganic insulation as it shows limitations on fire stability. In addition, as the demand for stone for exterior walls increases, Cellular Light -weight Concrete(CLC) with polymer is used to supplement fire stability and insulation performance, and the construction of stone is complemented by combining organic insulation, inorganic insulation, and stone. In this study, the compressive strength and adhesion in tension of CLC are studied. As a result of the experiment, the compressive strength of 28 days according to the polymer addition rate did not change. The adhesion in tension according to the polymer addition rate tends to increase as the addition rate increases. The target adhesion in tension is 0.8 MPa, but the maximum value of the experiment did not reach the target value, and further research was needed to combine to maintain the density and improve the adhesion in tension.

  • PDF