DOI QR코드

DOI QR Code

Adhesion and Interface Chemical Reactions of Cu/CuO/Polyimide System

Cu/CuO/Polyimide 시스템의 접착 및 계면화학 반응

  • Lee, K.W. (Department of Materials Engineering, Chungbuk National University) ;
  • Chae, H.C. (Department of Materials Engineering, Chungbuk National University) ;
  • Choi, C.M. (Department of Materials Engineering, Chungbuk National University) ;
  • Kim, M.H. (Department of Materials Engineering, Chungbuk National University)
  • 이경운 (충북대학교 공과대학 신소재공학과) ;
  • 채홍철 (충북대학교 공과대학 신소재공학과) ;
  • 최철민 (충북대학교 공과대학 신소재공학과) ;
  • 김명한 (충북대학교 공과대학 신소재공학과)
  • Published : 2007.02.27

Abstract

The magnetron reactive sputtering was adopted to deposit CuO buffer layers on the polyimide surfaces for increasing the adhesion strength between Cu thin films and polyimide, varying $O_2$ gas flow rate from 1 to 5 sccm. The CuO oxide was formed through all the $O_2$ gas flow rates of 1 to 5 sccm, showing the highest value at the 3 sccm $O_2$ gas flow rate. The XPS analysis revealed that the $Cu_2O$ oxide was also formed with a significant ratio during the reactive sputtering. The adhesion strength is mainly dependent on the amount of CuO in the buffer layers, which can react with C-O-C or C-N bonds on the polyimide surfaces. The adhesion strength of the multi-layered Cu/buffer layer/polyimide specimen decreased linearly as the heating temperature increased to $300^{\circ}C$, even though there showd no significant change in the chemical state at the polyimide interface. This result is attributed to the decrease in surface roughness of deposited copper oxide on the polyimide, when it is heated.

Keywords

References

  1. R. R. Tummala and E. J. Rymaszewski (eds), Microelectronics Packaging Handbook, p.673, VNR, New York (1989)
  2. B. Chapman, Glow Discharge Processes, p.201, John Wiley & Sons, New York(1980)
  3. B. Navinsek, V. Marinkovic, M. Osredkar and G. Carter, Rad. Effects 3115 (1970)
  4. C. J. Beevers and R. S. Nelson, Phil. Mag., 8, 1189 (1963) https://doi.org/10.1080/14786436308207344
  5. M. J. Goldberg, J. G. Clabes and C. A. Kovac, J. Vac. Sci. Technol., A6, 991 (1988) https://doi.org/10.1116/1.575006
  6. A. K. Oultache and R. E. Prud'homme, Polym. Adv. Technol., 11, 316 (2000) https://doi.org/10.1002/1099-1581(200006)11:6<316::AID-PAT983>3.0.CO;2-S
  7. S. Ghosh, D. K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya and W. Assmann, Vacuum, 57, 377 (2000) https://doi.org/10.1016/S0042-207X(00)00151-2
  8. M. Naddaf, C. Balasubramanian, P. S. Alegaonkar, V. N. Bhoraskar, A. B. Mandle, V. Ganeshan and S. V. Bhoraskar, Nuclear Instruments and Method in Physics Res., B222, 135 (2004) https://doi.org/10.1016/j.nimb.2003.12.087
  9. W. J. Lee, Y. S. Lee, S. K. Rha, Y. J. Lee, K. Y. Lim, Y. D. Chung and C. N. Whang, Appl. Surf. Sci., 205, 128 (2003) https://doi.org/10.1016/S0169-4332(02)01016-4
  10. B. J. Bachman and M. J. Vasile, J. Vac. Sci. Technol., A7, 2709 (1989) https://doi.org/10.1116/1.575779
  11. A. M. Ektessabi and S. Hakamata, Thin Solid Film, 377-378, 621 (2000) https://doi.org/10.1016/S0040-6090(00)01444-9
  12. M. H. Kim and K. W. Lee, Met. Mater.-Int., 7, 425 (2006) https://doi.org/10.1007/BF03027710