• Title/Summary/Keyword: The adhesion strength

Search Result 1,341, Processing Time 0.024 seconds

Improvement of Adhesion of Footwear Nylon Fabric by Corona Treatment (코로나 처리를 이용한 신발용 나일론 직물의 접착력 향상)

  • Lee, Jae Ho
    • Journal of Adhesion and Interface
    • /
    • v.7 no.3
    • /
    • pp.26-33
    • /
    • 2006
  • Nylon fabrics were corona treated with different current intensity (5, 10, 15, 20 A) and feeding speed (5, 10, 15 m/min). We confirmed the change of nylon fabrics surface using X-ray diffraction apparatus, scanning electron microscopy (SEM) and X-ray photoelectron spectrometer (ESCALAB). And the change of physical properties through measuring the tensile strength, tear strength, bonding and wet bonding strength. Thermosetting reactive polyurethane hot melt adhesive was used in the adhesion of nylon fabrics. Functional groups were introduced on nylon fabric surface by treating the fabrics in air atmosphere with corona discharge, and the result adhesion was improved. Bonding strength of the nylon fabric treated with corona was increased with increasing current intensity and decreasing feeding speed.

  • PDF

Tensile and Adhesive Properties of Polymer Cement Mortar with EVA Emulsion, Blast-Furnace Slag and Fly Ash as a Repair Material (보수재료로서 EVA 에멀젼과 고로슬래그 미분말 및 플라이애쉬를 혼입한 폴리머 시멘트 모르타르의 인장·접착특성)

  • Jo, Young-Kug
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.11
    • /
    • pp.147-154
    • /
    • 2019
  • The purpose of this study is to evaluate the effect of admixtures as blast-furnace slag(BF) and fly ash(FA) on tensile and adhesive properties of polymer cement mortar(PCM) with EVA emulsion. The test specimens are prepared with five polymer-cement ratio(P/C) and five admixture contents, and tested for tensile strength and adhesion in tension. From the test results, the tensile strength and adhesion in tension could be improved by an appropriate combination of P/C and admixture contents. In particular, the maximum of tensile strength of PCM with P/C 10% and BF content of 10% is 4.70MPa which is about 1.55 times higher than that of plain mortar, and about 1.22 times that of PCM that does not contain any mixture. The ratio of adhesion in tension to tensile strength of PCM with admixtures averaged 55.8%. It is also apparent that admixture contents of 5% or 10% could be proposed for improvement of tensile strength and adhesion in tension of PCM.

Interfacial Characteristics of Al/Cu Hybrid Materials Prepared by Compound Casting (복합주조공정으로 제조한 Al/Cu 하이브리드 소재의 계면특성)

  • Kim, Nam-Hoon;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.141-146
    • /
    • 2015
  • Aluminum-based hybrid parts were fabricated through a compound casting process with Al or Cu inserts which can be used for applications requiring high conductivity. Because the interface stability between the insert and the aluminum matrix is important, the effects of process variables on the interfacial adhesion strength were investigated. Additions of Cu and Mg to Al melt were found to enhance the adhesion strength, though the melt fluidity was slightly deteriorated when a small amount of Mg was added. An isothermal heating process after casting further improved the strength. However AlCu intermetallic compounds formed and their thickness increased during the heating process. As a result, deterioration in the interfacial adhesion strength was observed after an excessive annealing treatment.

Properties of Adhesion in Flexure and Tension of Polymer Cement Mortar Using SAE Emulsion with Blast-Furnace and Fly Ash as a Repair Material (보수재료로서 고로슬래그 미분말 및 플라이애쉬를 혼입한 SAE 에멀젼 기반 폴리머 시멘트 모르타르의 휨접착 및 인장접착 특성)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.485-494
    • /
    • 2019
  • This study is to evaluate the effect of admixtures such as blast-furnace slag and fly ash on adhesion in flexure and tension of polymer cement mortar(PCM) using SAE emulsion. The test specimens are prepared with five polymer-cement ratios and five admixture contents, and tested for flexural strength, adhesion in flexure, tensile strength and adhesion in tension. Based on the test results, no improvement of flexural strength and adhesion in flexure caused by admixtures in PCM can be indicated, but the tensile strength and adhesion in tension is improved due to mixing of the admixtures. In particular, the maximum of adhesion in tension of PCM with P/C 20% and BF content of 10% is 3.35MPa which is about 2.36 times higher than that of ordinary cement mortar, and 1.32 times that of PCM that does not contain any admixture. The average ratio of adhesion in tension to tensile strength of PCM was 48.7%. It is apparent that admixture contents of 5% or 10% could be proposed for improvement of tensile strength and adhesion in tension of PCM.

Structural Effect of Conductive Carbons on the Adhesion and Electrochemical Behavior of LiNi0.4Mn0.4Co0.2O2 Cathode for Lithium Ion Batteries

  • Latifatu, Mohammed;Bon, Chris Yeajoon;Lee, Kwang Se;Hamenu, Louis;Kim, Yong Il;Lee, Yun Jung;Lee, Yong Min;Ko, Jang Myoun
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.330-338
    • /
    • 2018
  • The adhesion strength as well as the electrochemical properties of $LiNi_{0.4}Mn_{0.4}Co_{0.2}O_2$ electrodes containing various conductive carbons (CC) such as fiber-like carbon, vapor-grown carbon fiber, carbon nanotubes, particle-like carbon, Super P, and Ketjen black is compared. The morphological properties is investigated using scanning electron microscope to reveal the interaction between the different CC and the active material. The surface and interfacial cutting analysis system is also used to measure the adhesion strength between the aluminum current collector and the composite film, and the adhesion strength between the active material and the CC of the electrodes. The results obtained from the measured adhesion strength points to the fact that the structure and the particle size of CC additives have tremendous influence on the binding property of the composite electrodes, and this in turn affects the electrochemical property of the configured electrodes.

A Study on Trend of Joint Tensile Strength with Joint Hot Air Welding Speed in EVA Waterproofing Sheet (Focusing on the summer Season) (EVA방수시트의 접합부 열풍융착 시 융착속도 변화에 따른 접합 인장강도 변화 추이 연구(하절기 중심으로))

  • Kim, Sun-Do;An, Hyun-Ho;Park, Wan-Goo;Kim, Dong-Bum;Park, Jin-Sang;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.217-218
    • /
    • 2016
  • Sheet based waterproofing methods are factory produced and have a advantage or forming uniform waterproofing layer in construction sites, allowing them to become a commonly used material domestically. Particularly in the case of EVA waterproofing sheets, they can be manufacturing using recycled materials and are thus increasing in application due to their eco-friendly factors. However, heating adhesion method has to be used in case of overlapping areas of waterproofing sheets, but not enough studies have been made on the adhesion stability based on different heat adhesion speed. In this paper, EVA sheets have been studied with their overlap area properties following a heat adhesion method in wintertime ambient conditions and have been observed for the changes in the tensile strength based on different head adhesion speed and rates. According to the results, 6~7m/min adhesion speed was shown to have produce the best tensile strength.

  • PDF

Evaluation of Ice Adhesion Strength on the Oxidation of Transmission Line ACSR Cable (송전선로 ACSR 케이블의 산화에 따른 결빙 특성 평가)

  • Cho, Hui Jae;Kim, You Sub;Jung, Yong Chan;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.378-384
    • /
    • 2019
  • Ice accumulation on Aluminum Conductor Steel Reinforced(ACSR) cable during winter is an important matter in terms of safety, economy, and efficient power supply. In this work, the ice adhesion strengths of ACSR cable oxidized during different periods(7 years oxidized and 15 years oxidized) are evaluated. At first, a plate type dry oxidation standard specimen, whose surface characteristics are similar to those of ACSR cable, is prepared. Dry oxidation standard specimens are heat-treated at $500^{\circ}C$ for 20, 60, and 120 minutes in order to obtain different degrees of oxidation. After the dry oxidation, surface properties are analyzed using contact angle analyzer, atomic force microscopy, spectrophotometer, and gloss meter. The ice adhesion strengths are measured using an ice pull-off tester. Correlations between the surface properties and the ice adhesion strength are obtained through a regression analysis indicating a Boltzmann equation. It is revealed that the ice adhesion strength of 15-year oxidized ACSR cable is approximately 8 times higher than that of ACSR-bare.

Irregular Failures at Metal/polymer Interfaces

  • Lee, Ho-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.347-355
    • /
    • 2003
  • Roughening of metal surfaces frequently enhances the adhesion strength of metals to polymers by mechanical interlocking. When a failure occurs at a roughened metal/polymer interface, the failure prone to be cohesive. In a previous work, an adhesion study on a roughened metal (oxidized copper-based leadframe)/polymer (Epoxy Molding Compound, EMC) interface was carried out, and the correlation between adhesion strength and failure path was investigated. In the present work, an attempt to interpret the failure path was made under the assumption that microvoids are formed in the EMC as well as near the roots of the CuO needles during compression-molding process. A simple adhesion model developed from the theory of fiber reinforcement of composite materials was introduced to explain the adhesion behavior of the oxidized copper-based leadframe/EMC interface and failure path. It is believed that this adhesion model can be used to explain the adhesion behavior of other similarly roughened metal/polymer interfaces.

Study on the Effect of Sputtering Process on the Adhesion Strength of CrZrN Films Synthesized by a Duplex Surface Treatment Process (복합표면처리된 CrZrN 박막의 밀착력에 미치는 스퍼터링 효과에 관한 연구)

  • Kim, M.K.;Kim, E.Y.;Lee, S.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.268-275
    • /
    • 2006
  • In this study, effect of sputtering on the plasma-nitriding substrate and before PVD coating on the microstucture, microhardness, surface roughness and the adhesion strength of CrZrN thin films were investigated. Experimental results showed that this sputtering process not only removed surface compound layer which formed during a plasma nitriding process but also induced an alteration of the surface of plasma nitrided substrate in terms of microhardness distribution, surface roughness. This in turn affected the adhesion strength of PVD coatings. After sputtering, microhardness distribution showed general decrease and the surface roughness became increased slightly. The critical shear stress measured from the scratch test on the CrZrN coatings showed an approximately 1.4 times increase in the adhesion strength through the sputtering prior to the coating and this could be attributed to a complete removal of compound layer from the plasma nitrided surface and to an increase in the surface roughness after sputtering.

A Study on the Adhesion Performance of Solid Forming Angle at Fiber Panel in the Water Supply Facility (수처리 시설물에 적용되는 섬유패널 배면부의 입체 성형 각도에 따른 부착 성능 연구)

  • Youn, Joon-No;Park, Wan-Goo;Choi, Su-Young;Kim, Dong-Bum;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.171-172
    • /
    • 2018
  • The purpose of this study is to confirm the adhesion performance of the three - dimensional forming fiber panels by the dimensional forming angle. As a result of applying the three dimensional surface shape to the back side of the fiber panel and testing the adhesion strength by the three dimensional forming angle, it was confirmed that the bonding strength of the specimens to which the dimensional molding was applied was higher than that of the non dimensional molding. In addition, the highest adhesion strength was confirmed in a specimen having a three-dimensional forming angle of 70 °.

  • PDF