• Title/Summary/Keyword: The White Noise

Search Result 1,074, Processing Time 0.044 seconds

Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.139-160
    • /
    • 2015
  • The global performance of the 5MW OC4 semisubmersible floating wind turbine in random waves was numerically simulated by using the turbine-floater-mooring fully coupled and time-domain dynamic analysis program FAST-CHARM3D. There have been many papers regarding floating offshore wind turbines but the effects of second-order wave-body interactions on their global performance have rarely been studied. The second-order wave forces are actually small compared to the first-order wave forces, but its effect cannot be ignored when the natural frequencies of a floating system are outside the wave-frequency range. In the case of semi-submersible platform, second-order difference-frequency wave-diffraction forces and moments become important since surge/sway and pitch/roll natural frequencies are lower than those of typical incident waves. The computational effort related to the full second-order diffraction calculation is typically very heavy, so in many cases, the simplified approach called Newman's approximation or first-order-wave-force-only are used. However, it needs to be justified against more complete solutions with full QTF (quadratic transfer function), which is a main subject of the present study. The numerically simulated results for the 5MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model test results by Technip/NREL/UMaine. The predicted motions and mooring tensions for two white-noise input-wave spectra agree well against the measure values. In this paper, the numerical static-offset and free-decay tests are also conducted to verify the system stiffness, damping, and natural frequencies against the experimental results. They also agree well to verify that the dynamic system modeling is correct to the details. The performance of the simplified approaches instead of using the full QTF are also tested.

Energy harvesting from piezoelectric strips attached to systems under random vibrations

  • Trentadue, Francesco;Quaranta, Giuseppe;Maruccio, Claudio;Marano, Giuseppe C.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.333-343
    • /
    • 2019
  • The possibility of adopting vibration-powered wireless nodes has been largely investigated in the last years. Among the available technologies based on the piezoelectric effect, the most common ones consist of a vibrating beam covered by electroactive layers. Another energy harvesting strategy is based on the use of piezoelectric strips attached to a hosting structure subjected to dynamic loads. The hosting structure, for example, can be the system to be equipped with wireless nodes. Such strategy has received few attentions so far and no analytical studies have been presented yet. Hence, the original contribution of the present paper is concerned with the development of analytical solutions for the electrodynamic analysis and design of piezoelectric polymeric strips attached to relatively large linear elastic structural systems subjected to random vibrations at the base. Specifically, it is assumed that the dynamics of the hosting structure is dominated by the fundamental vibration mode only, and thus it is reduced to a linear elastic single-degree-of-freedom system. On the other hand, the random excitation at the base of the hosting structure is simulated by filtering a white Gaussian noise through a linear second-order filter. The electromechanical force exerted by the polymeric strip is negligible compared with other forces generated by the large hosting structure to which it is attached. By assuming a simplified electrical interface, useful new exact analytical expressions are derived to assess the generated electric power and the integrity of the harvester as well as to facilitate its optimum design.

A Survey on the Actual Conditions of Summer Working Uniforms for Contracted Foodservice Workers (위탁급식업체 종사자의 하절기 작업복 착용 실태에 관한 연구)

  • Lee, Hyo-Hyeon;Yeom, Jeong-Ha;Choi, Jeong-Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.4
    • /
    • pp.553-562
    • /
    • 2010
  • This survey investigates the conditions of summer working uniforms for contracted foodservice workers. The data were obtained from 67 workers through in-depth interviews (July 2005~October 2005). The results of study are as follows: The working environment changed to menu and cooking method (air temperature $28\sim37^{\circ}C$, humidity 72~86 %RH, radiant temperature $27\sim37^{\circ}C$, air velocity 0.14~0.37m/sec). They answered that the working environment has high temperatures, humidity, excessive noise, and liability to slide. The typical accidents were burns, cuts, slide, and ligament injuries in the workplace. Work duties consisted of cooking, serving food, washing, and cleaning up leftover food. All the employees carried out multi tasks. The primary working postures and motions were standing, crouching, and lifting. The female workers usually wore underwear (panty and brassiere), upper and lower work wear, aprons, waterproof-aprons, cotton-gloves, rubber-gloves, socks, and rubber-boots. The satisfaction of the uniform was relatively low for trousers and waterproof-aprons. The answer about the fit was generally "comfortable." They answered "back," "chest," and "head" were wet with perspiration during work. The uncomfortable parts were the crotch and neck. Questions concerning their satisfaction with the material of uniforms indicated a high rate of dissatisfaction, particularly for ventilation and absorbency. In case of the colors of the working uniform, workers preferred white color for the upper part, and black color for the lower part.

Load Modeling based on System Identification with Kalman Filtering of Electrical Energy Consumption of Residential Air-Conditioning

  • Patcharaprakiti, Nopporn;Tripak, Kasem;Saelao, Jeerawan
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • This paper is proposed mathematical load modelling based on system identification approach of energy consumption of residential air conditioning. Due to air conditioning is one of the significant equipment which consumes high energy and cause the peak load of power system especially in the summer time. The demand response is one of the solutions to decrease the load consumption and cutting peak load to avoid the reservation of power supply from power plant. In order to operate this solution, mathematical modelling of air conditioning which explains the behaviour is essential tool. The four type of linear model is selected for explanation the behaviour of this system. In order to obtain model, the experimental setup are performed by collecting input and output data every minute of 9,385 BTU/h air-conditioning split type with $25^{\circ}C$ thermostat setting of one sample house. The input data are composed of solar radiation ($W/m^2$) and ambient temperature ($^{\circ}C$). The output data are power and energy consumption of air conditioning. Both data are divided into two groups follow as training data and validation data for getting the exact model. The model is also verified with the other similar type of air condition by feed solar radiation and ambient temperature input data and compare the output energy consumption data. The best model in term of accuracy and model order is output error model with 70.78% accuracy and $17^{th}$ order. The model order reduction technique is used to reduce order of model to seven order for less complexity, then Kalman filtering technique is applied for remove white Gaussian noise for improve accuracy of model to be 72.66%. The obtained model can be also used for electrical load forecasting and designs the optimal size of renewable energy such photovoltaic system for supply the air conditioning.

Satisfaction on School Meal Service and Food Preference of Elementary School Students in Chungnam (충남 일부 지역 초등학생의 학교급식 만족도와 음식 기호도)

  • Lee, Kil-Yeub;Bae, Yun-Jung;Choi, Mi-Kyeong;Kim, Myung-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.1
    • /
    • pp.129-138
    • /
    • 2017
  • The purpose of this study was to evaluate the satisfaction with school meal service and the food preference in elementary school students who are in their growth period. A total of 484 students (242 boys) participated and completed a questionnaire survey. The results indicated that the merit of school meals was the highest in 'balanced diet'. 'Food hygiene' and 'delicious food' were the most important factors in school meals. Most of the students wanted 'balance between eastern and western foods' and 'new dishes' for the menu of school meals. For the distribution of meals, 'various kinds of side dishes' and 'warmth of dishes' were mainly required. The main problems of the current environment of school meals were 'long waiting time' and 'noise of the cafeteria'. In satisfaction with the school meal service, the highest satisfactory factor was 'staffs' cleanliness', following 'arrangement of furniture in cafeteria' and 'nutrition information-providing'; whereas, the lowest factor was 'staffs' kindness'. In the preference of foods, students preferred 'white rice'; whereas they did not like 'bean rice'; and 'fried rice' was preferred. In side dishes with meat and fish, most of the meats including 'Tangsuyuk' and 'Bulgogi' were preferred. For fish, 'fried hairtail' was preferred; whereas, 'fried Spanish mackerel' was not. In case of kimchi, 'Chinese cabbage kimchi' and 'cubed radish kimchi' were especially preferred. Considering these results, intensive improvement is required to increase school meal satisfaction by understanding the students' needs. An effort to allow the students' preferences to be reflected in the menu is also needed.

Electric Arc Furnace Voltage Flicker Mitigation by Applying a Predictive Method with Closed Loop Control of the TCR/FC Compensator

  • Kiyoumarsi, Arash;Ataei, Mohhamad;Hooshmand, Rahmat-Allah;Kolagar, Arash Dehestani
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.116-128
    • /
    • 2010
  • Modeling of the three phase electric arc furnace and its voltage flicker mitigation are the purposes of this paper. For modeling of the electric arc furnace, at first, the arc is modeled by using current-voltage characteristic of a real arc. Then, the arc random characteristic has been taken into account by modulating the ac voltage via a band limited white noise. The electric arc furnace compensation with static VAr compensator, Thyristor Controlled Reactor combined with a Fixed Capacitor bank (TCR/FC), is discussed for closed loop control of the compensator. Instantaneous flicker sensation curves, before and after accomplishing compensation, are measured based on IEC standard. A new method for controlling TCR/FC compensator is proposed. This method is based on applying a predictive approach with closed loop control of the TCR/FC. In this method, by using the previous samples of the load reactive power, the future values of the load reactive power are predicted in order to consider the time delay in the compensator control. Also, in closed loop control, two different approaches are considered. The former is based on voltage regulation at the point of common coupling (PCC) and the later is based on enhancement of power factor at PCC. Finally, in order to show the effectiveness of the proposed methodology, the simulation results are provided.

Audio Forensic Marking using Psychoacoustic Model II and MDCT (심리음향 모델 II와 MDCT를 이용한 오디오 포렌식 마킹)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper, the forensic marking algorithm is proposed using psychoacoustic model II and MDCT for high-quality audio. The proposed forensic marking method, that inserts the user fingerprinting code of the audio content into the selected sub-band, in which audio signal energy is lower than the spectrum masking level. In the range of the one frame which has 2,048 samples for FFT of original audio signal, the audio forensic marking is processed in 3 sub-bands. According to the average attack of the fingerprinting codes, one frame's SNR is measured on 100% trace ratio of the collusion codes. When the lower strength 0.1 of the inserted fingerprinting code, SNR is 38.44dB. And in case, the added strength 0.5 of white gaussian noise, SNR is 19.09dB. As a result, it confirms that the proposed audio forensic marking algorithm is maintained the marking robustness of the fingerprinting code and the audio high-quality.

Kalman Filter Design For Aided INS Considering Gyroscope Mixed Random Errors (자이로의 불규칙 혼합잡음을 고려한 보조항법시스템 칼만 필터 설계)

  • Seong, Sang-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.47-52
    • /
    • 2006
  • Using the equivalent ARMA model representation of the mixed random errors, we propose Klaman filter design methods for aided INS(Inertial Navigation System) which contains the gyroscope mixed random errors. At first step, considering the characteristic of indirect feedback Kalman filter used in the aided INS, we perform the time difference of equivalent ARMA model. Next, according to the order of the time differenced ARMA model, we achieve the state space conversion of that by two methods. If the order of AR part is greater than MA part, we use controllable or observable canonical form. Otherwise, we establish the state apace equation via the method that several step ahead predicts are included in the state variable, where we can derive high and low order models depending on the variable which is compensated from gyroscope output. At final step, we include the state space equation of gyroscope mixed random errors into aided INS Kalman filter model. Through the simulation, we show that both the high and low order filter models proposed give less navigation errors compared to the conventional filter which assume the mixed random errors as white noise.

Quality Enhancement of Wave Data Observed by Radar at the Socheongcho Ocean Research Station (소청초 종합해양과학기지 Radar 파랑 관측 데이터의 신뢰도 향상)

  • Min, Yongchim;Jeong, JinYong;Shim, Jae-Seol;Do, Kideok
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.4
    • /
    • pp.189-196
    • /
    • 2017
  • Ocean Research Stations (ORSs) is the ocean platform type observation towers and measured oceanic, atmospheric and environmental data. These station located on the offshore area far from the coast, so they can produce the data without land effect. This study focused to improve the wave data quality of ORS station. The wave observations at ORSs are used by the C-band (5.8 GHz, 5.17 cm) MIROS Wave and Current Radar (MWR). MWR is convenient to maintenance and produce reliability wave data under bad weather conditions. MWR measured significant wave height, peak wave period, peak wave direction and 2D wave spectrum, so it's can provide wave information for researchers and engineers. In order to improve the reliability of MWR wave data, Datawell Waverider Buoy was installed near the one ORS (Socheoncho station) during 7 months and validate the wave data of MWR. This study found that the wave radar tend to be overestimate the low wave height under wind condition. Firstly, this study carried out the wave Quality Control (QC) using wind data, however the quality of wave data was limited. So, this study applied the four filters (Correlation Check, Direction Filter, Reduce White Noise and Phillips Check) of MWR operating software and find that the filters effectively improve the wave data quality. After applying 3 effective filters in combination, the RMSE of significant wave height decreased from 0.81m to 0.23m, by 0.58m and Correlation increased from 0.66 to 0.96, by 0.32, so the reliability of MWR significant wave height was significantly improved.

A Time Series Analysis for the Monthly Variation of $SO_2$ in the Certain Areas (ARIMA model에 의한 서울시 일부지역 $SO_2$ 오염도의 월변화에 대한 시계열분석)

  • Kim, Kwang-Jin;Lee, Sang-Hun;Chung, Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.72-81
    • /
    • 1988
  • The typical ARIMA model which was developed by Box and Jenkins, was applied to the monthly $SO_2$ data collected at Seoungsoo and Oryudong in metropolitan area over five years, 1982 to 1986. To find out the changing pattern of $SO_2$ concentration, autocorrelation and partial autocorrelation analysis were undertaken. The three steps of time series model building were followed and the residual series was found to be a random white noise. The results of this study is summarized as follows. 1) The monthly $SO_2$ series was found to be a non-stationary series which which has a periodicity of 12 months. After eliminating the periodicity by differencing, the monthly $SO_2$ series became a stationary series. 2) The ARIMA seasonal model of the $SO_2$ was determined to be ARIMA $(1, 0, 0)(0, 1, 0,)_{12}$ model. 3) The model equations based on the prediction were: for Seoungsoodong: $Y_t = 0.5214Y_{t-1} + Y_{t-12} - 0.5214Y_{t-13} + a_t$ for Oryudong: $Y_t = 0.8549Y_{t-1} + Y_{t-12} - 0.8549Y_{t-13} + a_t$ 4) The validity of the model identified was checked by compairing the measured $SO_2$ values and one-month-ahead predicted values. The result of correlation and regression analysis is as follows. Seoungsoodong: $Y = 0.8710X + 0.0062 r = 0.8768$ Oryudong : $Y = 0.8758X + 0.0073 r = 0.9512$

  • PDF