• 제목/요약/키워드: The Shaft system

검색결과 1,125건 처리시간 0.03초

HVDC단에 연결된 터빈-발전기의 비틀림 스트레스 해석 (Torsional Stress Analysis of Turbine-Generator Connected to HVDC System)

  • 김찬기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권8호
    • /
    • pp.416-426
    • /
    • 2001
  • This paper deals with the impact of an inverter station on the torsional dynamics of turbine-generator which is located at the inverter side of a HVDC-AC network power system. The studies show that the torsional stress of turbine-generator depends on the AC network fault locations because of the commutation failures of inverter station. And the torsional stress induce fatigue in the shaft material and reduce the shaft life-time. So, the purpose of this paper is to analysis the torsional stress of turbine-generator shaft at inverter side, to find the checked points of turbine-generator. The EMTDC program is used for the simulation studies.

  • PDF

가변속 왕복동형 압축기 크랭크축-베어링계의 동적 거동 해석 (Dynamic Behavior Analysis of a Crankshaft-Bearing System in Variable Speed Reciprocating Compressor)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제17권6호
    • /
    • pp.426-434
    • /
    • 2001
  • The hermetic reciprocating compressor driven by the BLDC motor rotating with variable speeds, is modelled and analyzed for dynamic characteristics. The governing equations of piston, connecting rod and crank-shaft of the reciprocating compression mechanism and characteristics of driving torque of the motor are obtained. Dynamic behavior of the crankshaft supported on 2 journal bearings is analyzed considering compression load and eccentric unbalance for the 4 rotating speeds of crankshaft. And. reaction forces generated from oil film in the journal bearings are analyzed under transient condition using Reynolds' equation. To take into account the dynamic characteristics depending on the variable rotating speeds, comparison on the dynamic behavior of crank-shaft is made for the 4 operating modes of the compressor. Results show that the magnitude of crankshaft locioperating on the lower rotating speeds is more larger than the higher ones due to reduction of inertia force of the reciprocating piston.

Design of initial support required for excavation of underground cavern and shaft from numerical analysis

  • Oh, Joung;Moon, Taehyun;Canbulat, Ismet;Moon, Joon-Shik
    • Geomechanics and Engineering
    • /
    • 제17권6호
    • /
    • pp.573-581
    • /
    • 2019
  • Excavation of underground cavern and shaft was proposed for the construction of a ventilation facility in an urban area. A shaft connects the street-level air plenum to an underground cavern, which extends down approximately 46 m below the street surface. At the project site, the rock mass was relatively strong and well-defined joint sets were present. A kinematic block stability analysis was first performed to estimate the required reinforcement system. Then a 3-D discontinuum numerical analysis was conducted to evaluate the capacity of the initial support and the overall stability of the required excavation, followed by a 3-D continuum numerical analysis to complement the calculated result. This paper illustrates the application of detailed numerical analyses to the design of the required initial support system for the stability of underground hard rock mining at a relatively shallow depth.

노후 공동주택의 위생설비 리모델링 계획방안에 관한 연구 (A Study on the Sanitary Piping System Plan When an Aged Public Housing is Remodeled)

  • 한수곤;이상엽;이승연;홍민호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.569-574
    • /
    • 2008
  • Recently, the domestic remodeling market is increased in scale. This study is to develop the sanitary piping system which improves quality of life and facility performance when the aged public housing is remodeled. Above all, we found out three standard floor plans in bathrooms of the public housing. And then, the plan and section types of the sanitary piping system were developed for the on-floor piping, a construction cost of each section types was estimated to review the economical fact. Also, the field mock-up test was performed in the type of the pipe shaft with on-floor pit. In result, the developed sanitary piping system was available for the remodeling public housing without a great facility cost. Additionally, the sanitary pipe was replaced easily through the shaft and on-floor fit. And a noise was reduced to a lower unit when the water flowed down.

  • PDF

V-벨트 무단변속기(無段變速機)를 이용(利用)한 자탈형(自脫型) 콤바인의 주행속도(走行速度) 제어(制御)(II) - V-벨트 무단변속기(無段變速機)의 변속특성(變速特性) - (A Forward Speed Control of Head-feed Combine Using Continuously Variable V-belt Transmission -Transmission Characteristics of CVVT-)

  • 최규홍;류관희;조영길;박판규
    • Journal of Biosystems Engineering
    • /
    • 제16권3호
    • /
    • pp.239-247
    • /
    • 1991
  • This study was conducted to investigate the feasbility of continuously variable V-belt transmission(CVVT) as automatic power transmission system of combine harvesters. An experimental set-up for testing the performance of CVVT and the automatic transmission system was designed and used to analyze the power transmission characteristics of CVVT. The transmission efficiency of CVVT was increased logarithmically with increase of the load of driven shaft, but was not affected by the speed ratios of transmission. More than 80% of transmission efficiency was obtained in the 25N-m load and more of driven-shaft, and the maximum efficiency was 88~91%. When rapid speed change of the CVVT was attempted, the speed of driven shaft was stabilized within about 0.4 seconds after shift operation in both cases of increasing and decreasing of the speed.

  • PDF

비대칭 축 강성을 가지는 발전기 회전자의 2X 진동 예측 (Prediction of 2X Vibration of a Generator Rotor with Asymmetric Shaft Stiffness)

  • 박철현;김영춘;조경구;양보석
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.16-19
    • /
    • 2007
  • The large generator rotor used in fossil power plant has the possibility of high 2X vibration due to asymmetric shaft stiffness. The generator rotor is machined into pole faces to reduce stiffness difference and then is tested through 2X vibration measurement when the balancing works are performed in the balancing shop. However, there are many cases of large difference values between 2X vibration in the balancing shop and 2X vibration in site. This paper presents a new method to estimate 2X vibration in site with more accuracy and applied for the retrofit of a fossil 400 MW class deteriorated generator. It shows that the new generator rotor is manufactured with a good 2X vibration characteristics and is operated in a low 2X vibration level although the generator rotor has high 2X vibration in the balancing shop.

  • PDF

다단 회전체 계의 동적 모델 개선에 관한 연구 (An Improved Dynamic Model for Multi-Stepped Rotor System)

  • 홍성욱;최성환
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.107-113
    • /
    • 2006
  • This paper presents an efficient dynamic modeling method for multi-stepped rotor system using effective spring elements to take into account the structural weakening effect due to the steps. This paper demonstrates that the Timoshenko shaft model give rise to a significant error in the case of multi-stepped rotors. An effective bending spring model is introduced to represent the structural weakening effect in the presence of steps. The proposed modeling method is validated through a series of simulations and experiments. Finally, a spindle is dealt with as an analysis example.

하중 종류에 따른 다단축의 응력 집중 완화에 대한 연구 (The Study for Reduction of Stress Concentration at the Stepped Shaft According to Two Types of External Force)

  • 박일수;심재준
    • 동력기계공학회지
    • /
    • 제14권1호
    • /
    • pp.47-52
    • /
    • 2010
  • In this study, Finite Element Analysis have been adopted to analyze reducing stress effect and used to induce the sensitivity of design parameter on various techniques which was used for reducing stress. And so it can be utilized as a data to design on similar model. The effect of reducing stress with respect to change of relief groove radius can be increased by 27.3~18.2 % more than radius of fillet. And if a shoulder fillet radius is larger, additional reducing stress by relief groove radius is not obtained. And there was only little effect on reducing stress by changing the center point of groove radius along horizontal direction. In the case that undercut radius is 1.5mm, Max. Equivalent stress is reduced by 5.71% under bending force and 11.11% under torsion. The best effect of reducing stress at undercut model was yielded when the undercut radius is a forth of difference of stepped shaft radius.

축교정을 위한 기하학적 진직도 적응제어기 설계 (Design of a Geometric Adaptive Straightness Controller for Shaft Straightening Process)

  • 김승철;정성종
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2451-2460
    • /
    • 2000
  • In order to minimize straightness error of deflected shaft, a geometric adaptive straightness controller system is studied. A multi-step straightening and a three-point bending process have been developed for the geometric adaptive straightness controller. Load-deflection relationship, on-line identification of variations of material properties, on-line springback prediction, and real-time hydraulic control methodology are studied for the three-point bending process. By deflection pattern analysis and fuzzy self-learning method in the multi-step straightening process, a straightening point and direction, desired permanent deflection and supporting condition are determined. An automatic straightening machine has been fabricated for rack bars by using the developed ideas. Validity of the proposed system is verified through experiments.

Aero Engine in the New Century -Challenge in Technology and Business-

  • Sekido, Toshinori
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.440-448
    • /
    • 2004
  • Toasting the 100 year anniversary of controlled, powered flight, the propulsion system used on today's aircraft represents the evolution of jet propulsion based on the gas turbine, first conceived by Whittle and Von Ohain about 70 years ago. In that period, propulsion system concepts have evolved through turbo-props, turbo-jets, low by-pass ratio(BPR) turbofans to today's high BPR 2-shaft and 3-shaft turbofans. Also, this period has seen remarkable progress in the performance, reliability environmental compatibility of these propulsion systems.(omitted)

  • PDF