• Title/Summary/Keyword: The Safety Inspection Model

Search Result 232, Processing Time 0.024 seconds

Numerical Analysis for Dynamic Characteristics of Next-Generation High-Speed Railway Bridge (차세대 고속철 통과 교량의 동적특성에 대한 수치해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Yi, Seong-Tae;Jeong, Byeong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • To take into account of the increasing speed of next generation high-speed trains, a new design code for the traffic safety of railway bridges is required. To solve dynamic responses of the bridge, this research offers a numerical analyses of PSC (Pre-stressed Concrete) box girder bridge, which is most representative of all the bridges on Gyungbu high-speed train line. This model takes into account of the inertial mass forces by the 38-degree-of-freedom and interaction forces as well as track irregularities. Our numerical analyses analyze the maximum vertical deflection and DAF (Dynamic Amplification Factor) between simple span and two-span continuous bridges to show the dynamic stability of the bridge. The third-order polynomial regression equations we use predict the maximum vertical deflections depending on varying running speeds of the train. We also compare the vertical deflections at several cross-sectional positions to check the influence of running speeds and the maximum irregularity at a longitudinal level. Moreover, our model analyzes the influence lines of vertical deflection accelerations of the bridge to evaluate traffic safety.

An Approach to Risk Assessment of City Gas Pipeline (도시가스 배관의 위험평가 방법론 제시)

  • Park Kyo-Shik;Lee Jin-Han;Jo Young-Do;Park Jin-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.33-40
    • /
    • 2003
  • In this work, a novel approach was introduced to assess cost of loss resulting from risk as well as to help deciding inspection period through quantifying risk. In order to quantifying risk of city gas pipeline, frequency and consequence analysis were required. The main causes of city gas accident were analyzed to be digging, external corrosion, ground movement, and equipment failure. Tools to evaluate frequency of each cause was also suggested. Among city gas accidents, fire damage is the dominant one and mainly discussed; fatality, burning injury, and damage to building were estimated using the consequence model suggested. By combining frequency and consequence analysis, evaluating cost of risk management together with calculating example. This work could be applicable for city gas companies to plan how to manage risk most effectively.

  • PDF

Fatigue life prediction based on Bayesian approach to incorporate field data into probability model

  • An, Dawn;Choi, Joo-Ho;Kim, Nam H.;Pattabhiraman, Sriram
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.427-442
    • /
    • 2011
  • In fatigue life design of mechanical components, uncertainties arising from materials and manufacturing processes should be taken into account for ensuring reliability. A common practice is to apply a safety factor in conjunction with a physics model for evaluating the lifecycle, which most likely relies on the designer's experience. Due to conservative design, predictions are often in disagreement with field observations, which makes it difficult to schedule maintenance. In this paper, the Bayesian technique, which incorporates the field failure data into prior knowledge, is used to obtain a more dependable prediction of fatigue life. The effects of prior knowledge, noise in data, and bias in measurements on the distribution of fatigue life are discussed in detail. By assuming a distribution type of fatigue life, its parameters are identified first, followed by estimating the distribution of fatigue life, which represents the degree of belief of the fatigue life conditional to the observed data. As more data are provided, the values will be updated to reduce the credible interval. The results can be used in various needs such as a risk analysis, reliability based design optimization, maintenance scheduling, or validation of reliability analysis codes. In order to obtain the posterior distribution, the Markov Chain Monte Carlo technique is employed, which is a modern statistical computational method which effectively draws the samples of the given distribution. Field data of turbine components are exploited to illustrate our approach, which counts as a regular inspection of the number of failed blades in a turbine disk.

Development and Application of Hydrological Safety Evaluation Guidelines for Agricultural Reservoir with AHP (AHP를 이용한 농업용저수지 수문학적 안전성평가 방법 개발 및 적용)

  • Lee, Jae Ju;Park, Jong Seok;Rhee, Kyoung Hoon
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.235-243
    • /
    • 2014
  • According to the "Safety Evaluation Detailed Instructions (Dam)", precise safety inspection is carried out for dams that exceed a certain scale. However, as the Hydrological Safety Evaluation from various evaluation standards is designed to evaluate the safety of existing dams considering PMF, the evaluation is much less applicable for most agricultural reservoirs. Therefore, the Hydrological Safety Guidelines for agricultural reservoirs are expected to be re-evaluated considering the diverse risk factors with the coefficient model and AHP in this study. The coefficient model has been developed by selecting the hydrological safety superordinate subordinate evaluation factors to reflect diverse risk factors of agricultural reservoirs. After calculating the sum of indicators score for each evaluation factors, validation procedures were performed for the questionnaire which a panel answered. The practical coefficient has eventually been estimated for the hydrological safety evaluation considering the diverse risk factors. The conclusions acquired based on the study done are that both most agricultural reservoirs were classified as flood defense capability is insufficient and agricultural reservoirs which meet embankment-freeboard standards considering PMF was overestimated.

Probabilistic Model of Service Life to Evaluate Damage Tolerance of Composite Structure (복합재 항공구조물의 손상허용평가를 위한 운항수명의 확률적 모델)

  • A.스튜어트;A.우샤코프;심재열;황인희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.245-248
    • /
    • 2000
  • Modern aircraft composite structures are designed using a damage tolerance philosophy. This design philosophy envisions sufficient strength and structural integrity of the aircraft to sustain major damage and to avoid catastrophic failure. The only reasonable way to treat on the same basis all the conditions and uncertainties participating in the design of damage tolerant composite aircraft structures is to use the probability-based approach. Therefore, the model has been developed to assess the probability of structural failure (POSF) and associated risk taking into account the random mechanical loads, random temperature-humidity conditions, conditions causing damages, as well as structural strength variations due to intrinsic strength scatter, manufacturing defects, operational damages, temperature-humidity conditions. The model enables engineers to establish the relationship between static/residual strength safety margins, production quality control requirements, in-service inspection resolution and criteria, and POSF. This make possible to estimate the cost associated with the mentioned factors and to use this cost as overall criterion. The methodology has been programmed into software.

  • PDF

Study on Decision-Making Model to Select Optimal Strengthening Method (최적 보강공법 선정을 위한 의사결정모델에 관한 연구)

  • Sun, Jong-Wan;Park, Kyong-Hoon;Oh, Hong-Sub;Cho, Hyo-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.117-124
    • /
    • 2010
  • Different to other social infrastructures, bridge elements or bridges can be damaged or collapsed and this may cause death toll and severe social and economical damage, bridges should be managed to maintain a safety level. Diverse strengthening methods is developed to improve a deteriorated bridge performance up to original design level. But rational decision-making process and methodologies to select a optimum strengthening method are absence yet in Korea. This paper therefore derived items and proposed methodologies for quantity estimate considering uncertainty to select a optimum strengthening method among conceptually designed alternatives. And also, to demonstrate the applicability and verification of the proposed approach, it was applied to select the optimum strengthening method for the deteriorated T-shape concrete girder bridge. The model and the procedure can greatly contribute to the uncertainty-oriented alternative selection.

Damage-Spread Analysis of Heterogeneous Damage with Crack Degradation Model of Deck in RC Slab Bridges (RC 슬래브교의 바닥판 균열 열화모델에 따른 이종손상 확산 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Kim, Jae-Hwan;Part, Ki-Tae;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.93-101
    • /
    • 2022
  • RC Slab bridges in Korea account for more than 70% of the total bridges for more than 20 years of service. As the number of aging structures increases, the importance of safety diagnosis and maintenance of structures increases. For highway bridges, cracks are a main cause of deck deterioration, which is very closely related to the decrease in bridge durability and service life. In addition, the damage rate of expansion joints and bearings accounts for approximately 73% higher than that of major members. Therefore, this study defined damage scenarios combined with devices damages and deck deterioration. The stress distribution and maximum stress on the deck were then evaluated using design vehicle load and daily temperature gradient for single and combined damage scenarios. Furthermore, this study performed damage-spread analysis and predicted condition ratings according to a deck deterioration model generated from the inspection and diagnosis history data of cracks. The heterogeneous damages combined with the member damages of expansion joints and bearings increased the rate of crack area and damage spread, which accelerated the time to reach the condition rating of C. Therefore, damage to bridge members requires proper and prompt repair and replacement, and otherwise it can cause the damage to bridge deck and the spread of the damage.

A study on the classification of various defects in concrete based on transfer learning (전이학습 기반 콘크리트의 다양한 결함 분류에 관한 연구)

  • Younggeun Yoon;Taekeun Oh
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.569-574
    • /
    • 2023
  • For maintenance of concrete structures, it is necessary to identify and maintain various defects. With the current method, there are problems with efficiency, safety, and reliability when inspecting large-scale social infrastructure, so it is necessary to introduce a new inspection method. Recently, with the development of deep learning technology for images, concrete defect classification research is being actively conducted. However, studies on contamination and spalling other than cracks are limited. In this study, a variety of concrete defect type classification models were developed through transfer learning on a pre-learned deep learning model, factors that reduce accuracy were derived, and future development directions were presented. This is expected to be highly utilized in the field of concrete maintenance in the future.

Improvement of learning concrete crack detection model by weighted loss function

  • Sohn, Jung-Mo;Kim, Do-Soo;Hwang, Hye-Bin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.15-22
    • /
    • 2020
  • In this study, we propose an improvement method that can create U-Net model which detect fine concrete cracks by applying a weighted loss function. Because cracks in concrete are a factor that threatens safety, it is important to periodically check the condition and take prompt initial measures. However, currently, the visual inspection is mainly used in which the inspector directly inspects and evaluates with naked eyes. This has limitations not only in terms of accuracy, but also in terms of cost, time and safety. Accordingly, technologies using deep learning is being researched so that minute cracks generated in concrete structures can be detected quickly and accurately. As a result of attempting crack detection using U-Net in this study, it was confirmed that it could not detect minute cracks. Accordingly, as a result of verifying the performance of the model trained by applying the suggested weighted loss function, a highly reliable value (Accuracy) of 99% or higher and a harmonic average (F1_Score) of 89% to 92% was derived. The performance of the learning improvement plan was verified through the results of accurately and clearly detecting cracks.

A study of the ISCS(Information Security Check Service) on performance measurement model and analysis method (정보보호 안전진단 성과관리 측정 모델 및 성과 분석 방안 연구)

  • Jang, Sang-Soo;Shin, Seung-Ho;Noh, Bong-Nam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.127-146
    • /
    • 2010
  • This report has continuously improved in Information Security Level of Information Communication Service Companies which are applicable to Information Security Safety Inspection System. Also, it presents a decided methodology after verified propriety and considered the pre-research or expropriation by being developed the way of Information Security Safety Result Measurement. Management territory weighted value was established and it was given according to the point of view and the strategy target and the and outcome index to consider overall to a measurement item. Accordingly, an outome to the Information Security Check Service is analyzed by this paper and measurement model and oucome analysis methodology are shown with this, and gives help to analyze an outcome. Also it make sure the the substantial information security check service will be accomplished, prevent a maintenance accident beforehand and improve an enterprise outcome independently by institutional system performance securement and enterprise.g corporate performance.