• Title/Summary/Keyword: The Ratio of Soil

Search Result 3,420, Processing Time 0.03 seconds

Screening of Herbicidal Activity from Aqueous Extracts of Coronopus didymus (냄새냉이 수용성추출물의 제초활성 탐색)

  • Kim, Tae-Keun;Song, Jin-Young;Kang, Jeong-Hwan;Yang, Young-Hoan;Kim, Hyoun-Chol;Song, Chang-Khil
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.1
    • /
    • pp.73-85
    • /
    • 2016
  • This study was carried out to allelopathic effects of aqueous extracts on Coronopus didymus in order to investigate the competitive dominant in plant ecosystem and possibility application in natural herbicide. Number of species and species diversity for close to patch of C. didymus was decreased gradually site #1 (7, 1.76), site #2 (5, 1.34) and site #3 (5, 1.25). It was generally decreased the relative germination ratio (r=-0.731, p<0.01), the mean germination time, the relative elongation ratio (r=-571, p<0.01, r=-0.730, p<0.01), the relative fresh weight (r=-0.743, p<0.01), development of root hairs of receptor plants by concentration of the aqueous extracts from C. didymu. But they were different from the growing regions, the kind of receptor plants and the treatment of the aqueous extracts. Especially, it was differently effected among growing regions that inhibited more radicle than shoot by the aqueous extracts concentration of C. didymus. Total phenolic compound in the aqueous extracts of C. didymus analyzed about $23.0{\pm}1.1mg/g$. Total phenolic compounds of soil in survey area was increased gradually site #1 ($0.072{\pm}0.002mg/g$), site #2 ($0.082{\pm}0.003mg/g$) and site #3 ($0.092{\pm}0.004 mg/g$). We think that the aqueous extracts of C. didymu showed allelopathic effects on other plants. Therefore, C. didymu hold the competitive dominant of plant ecosystem in Jeju Island and possibility application of natural herbicide.

Analysis of the Planting and Use of Landscaping Plants - Focused on Weonju and Hoengseong - (조경식물의 식재와 이용 - 원주시와 횡성군을 중심으로 -)

  • Won, Jong-Hwa;Jeong, Jin-Hyung;Kim, Chang-Seop;Lee, Ki-Eui
    • Journal of Forest and Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.34-58
    • /
    • 2005
  • This study was executed to find out how to improve the planting and use of landscaping plants in Weonju and Hoengseong. 1. The number of street trees were 22,068 and the species number were 10 species in Weonju in 2004. The major species of street trees were Ginkgo biloba(58%), Prunus sargentii(15%), Zelkova serrata(9%), Prunus armeniaca var. ansu(8%), and Acer palmatum(6%). The ratio of native species versus exotic were 50:50. In Hoengseong, the number of street trees was 13,500 and the species number were 15 species. The major species of street trees were Prunus sargentii(42%), Ginkgo biloba(23%), Acer triflorum(12%), Prunus armeniaca var. ansu(6%), and Prunus mume(4%). The ratio of native species versus exotic were 67:33. The species of which planting frequency within two areas was very high were Ginkgo biloba and Prunus sargentii. 2. It is necessary to select tree species suitable for the characteristics of the locality and to raise distinctive street trees that contribute to the tourist industry. For the purpose, the appropriate street trees in two areas are Cornus controversa, Quercus aliena, Zelkova serrata, Prunus padus, Sorbus alnifolia, Sorbus comixta, Albizzia julibrissin, Acer triflorum, Styrax japonica, Chionanthus retusus, Celtis sinensis, Prunus yedoensis, Malus sieboldii, Crataegus Pinnatifida, Prunus armeniaca var. ansu and Pyrus pyrifolia etc.. 3. Appropriate pruning adds to the aesthetic and prolongs the useful life, it also requires less managing of insects and diseases to maintain good healthy of street trees. Street trees were not properly pruned due to electric lines and shortage of pruning information. The pruning was controlled by Korea Electric Power Co, which has no pruning information. Pruning must be maintained by a professional landscape company to maintain good shape such as with Bonsai. The shrubs planting zone between street trees and other trees, and preservation plates were established for healthy of street trees. They have to be repaired and maintained well to keep better environmental conditions. The proper fertilization, the control of pests and diseases, the installation of drainpipe and the use of soil brought from another place were needed to improve the planting, use and maintenance of landscape plants. 4. The species number of school trees and flowers of 102 schools in Weonju and Hoengseong were 17species, 16species respectively. The major species of school trees in Weonju were Juniperus chinensis(24%), Ginkgo biloba(17%), Pinus densiflora(14%), Zelkova serrata(14%), and Pinus koraiensis(9%), and those of school trees in Hoengseong were Pinus koraiensis(44%), Abies holophylla(25%), Juniperus chinensis(8%), and Ginkgo biloba(8%). The major species of school flowers in Weonju were Rosa centifolia(47%), Forsythia koreana(24%), Magnolia kobus(12%), and Rhododendron schlippenbachii(6%), and those of school flowers in Hoengseong were Forsythia koreana(36%), Rhododendron schlippenbachii(33%), Magnolia kobus(6%) and Dicentra spectabilis(6%). 5. The species number of the protection trees designated by Woenju and Hoengseong were 15 species. The major species of protection trees were Zelkova serrata(100 trees), Ginkgo biloba(18) Pinus densiflora(7), Quercus spp. (5), Juniperus chinensis(4) and Alnus japonica(4). 6. The landscape plants planted around 2004 in weonju were Prunus yedoensis(2,563 trees), Betula platyphylla var. japonica(2,000), Abies holophylla(1,785), Diospyros kaki(1,100), Prunus sargentii(880) and Prunus armeniaca var. ansu(708) etc.. The shrubs planted were Rhododendron obutusum(21,559 plants), Rosa centifolia (7,150), Rhododendron yedoense var. poukhanense(5,950), Forsythia koreana(3,000) and Ligustrum obtusi[olium(2,500) etc.. The landscape plants planted in Hoengseong Acer triflorum(928trees), Prunus yedoensis(455), Zelkova serrata(327), Thuja orientalis(261), Prunus sargentii(257), Pinus koraiensis(200), Prunus persica for. rubro-plena(200) and Pyrus pyrifolia (200) etc.. The shrubs planted were Rhododendron yedoense var. poukhanense(15,936), Syringa dilatata(10,090), Forsythia koreana(9,660), Cercis chinensis(3,200), Buxus microphylla var. koreana(2,600) and Rosa centifolia(1,868) etc.. 7. The species numbers of the herbaceous plants planted in 2004 in Weonju were 24 species and the ratio of native species versus exotic were 7:17. The major species of perennial plants were Aster koraiensis(30,656 plants), Coreopsis drummondii(7,656), Rudbeckia bicolor(6,000), Chrysanthemum morifolium(4,850) and Chrysanthemum zawadskii var. latilobum(4,312). The major species of annuals and biennials were Cosmos bipinnatus(672,000 plants), Zinnia elegans(35,600), Petunia hybrida(26,920), Viola tricolor(23,000), Helianthus annuus(17,000), and Geranium cinereum var. pubcaulescens(5,200). In Hoengseong, the numbers of herbaceous plants were 906,310 plants and the species numbers were 15 species. The major species of perennials plants were Aster koraiensis(70,480 plants), Hemerocallis fulva(20,070), and Phlox drummondii(18,000). The major species of annuals and biennials were Phlox hybrida(174,000 plants), Cosmos bipinnatus(125,000), Zinnia elegans(109,000), Tagetes patula(96,700), Vinca rosea(89,000) and Calendula officinalis(70,000). 8. Through these result, it was thought that the diversification of planting species, the selection of plants suitable to each space and the generalization of use of native species were needed.

  • PDF

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF

Effects of Size and Environmental Condition on Burrowing of Artificial Seedling of Ark Shell, Scapharca broughtonii (Schrenck) (피조개, Scapharca broughtonii (Schrenck) 인공치패의 크기 및 환경조건이 잠입에 미치는 영향)

  • Kim, Byeong-Hak;Shin, Yun-Kyung;Choi, Nack-Joong;Oh, Bong-Se;Sohn, Sang-Gyu;Jung, Choon-Goo;Son, Tai-Sun;Kang, Kyoung-Ho
    • The Korean Journal of Malacology
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • The influence of individual size, sediment, gain size, water temperature, salinity and air exposure on burrowing rate was investigated in order to obtain the basic biological data on applying shellfish farm for a sustainable production of ark shell, Scapharca broughtonii (Schrenk). The burrowing rate on individual size 300 minutes after starting the experiment was the highest in the shell length $16.3\;{\pm}\;1.2\;mm$, 97.7%. The highest burrowing rates were 97.0% in $12.8\;{\pm}\;0.8\;mm$, 96.7% in $9.2\;{\pm}\;1.0\;mm$, and 96.3% in $5.9\;{\pm}\;0.7\;mm$. The clams over 6 mm of shell length had burrowing ability and the burrowing rate was not related to the shell size. The burrowing rate depending on the kind of grain at the bottom after 300 minutes was the highest, 98.3%, in the mixture of sand and silt with a ratio of 75:25. The rates were 98% in silt (100%), 97.3% in mixture sand and silt with a ratio of 50:50, 97.3% in sand and silt ratio of 25:75, and 86.3% in sand (100%) in this specific order. On grain size of the soil in the seafloor, the burrowing rates after 300 minutes was at its highest in the group of sand in pore size 1 mm with 85.0%, and the $12\;{\mu}m$ to 1 mm in the grain size was fitted to burrowing of artificial seed. In the case of water temperature, the burrowing rates were at its highest after 300 minutes. In $30^{\circ}C$ group, the rate was 96.7% and in $25^{\circ}C$ and $20^{\circ}C$, 90.0%. The rates decreased as the water temperature decreased below $15^{\circ}C$. The burrowing rates on salinity were the highest in 30 psu with 93.3% and at 15 psu and below, there was no noticeable change in the burrowing rate. On air exposure, the burrowing rates after 300 minutes were the highest in 1 hour with 93.3%, and remarkably decreased as air exposure time is longer after 12 hours of air exposure.

  • PDF

Responses of Resistant Genes to Barley Yellow Mosaic Virus (BaYMV) Strains in Korea (국내 분포 보리호위축바이러스(Barley Yellow Mosaic Virus) strain에 대한 저항성 유전자 반응)

  • Park, Jong-Chul;Noh, Tae-Hwan;Park, Chul-Soo;Kang, Chun-Sik;Kang, Mi-Hyung;Lee, Eun-Sook;Lee, Jun-Hee;Lee, Jung-Joon;Kim, Tae-Soo
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.72-76
    • /
    • 2009
  • It was investigated the responses of BaYMV resistant genes to Korean BaYMV(Barley yellow mosaic virus) strains. BaYMV was distributed dominantly with about 51% detection ratio among the three investigated virus such as BaYMV, BaMMV(Barley mild mosaic virus) and SBWMV(Soil-borne wheat mosaic virus) in ELISA test. Double infection with BaYMV and BaMMV was detected also higher as 38.8%, however, BaMMV sole infection ratio was lower with only 1.4%. The 11 BaYMV resistant genes were tested their responses to four Korean BaYMV strains, BaYMV-N, H, I and M. Generally, rym 3 genes showed resistant to Korean BaYMV strains and rym 4m and 5a also was better. Three genes, rym 1+5(Mokusekko-3), rym 3(Ea 52, Baitori) and rym 5a(Solan) showed resistant responses to BaYMV-N type. In -H strain test, seven genes that rym 2(Mihori Hadaka 3), rym 3(Ea 52, Haganemugi, Baitori), rym 4m(Diana, Franka), rym 5a(Solan), rym 7(Hor 3365), rym 9(Bulgarian 347), rym 12(Jochiwon Covered 2) were considered as resistant. The three genes that rym 1+5, rym 3 and rym 5a was effective to -I strain, and rym 3, rym 4m and rym 5a showed resistant to -M strain.

Effect of Slow-release Fertilizer Levels of Rice in Different Cultural Methods (벼 재배양식에 따른 유효성 비료의 시용량이 생육과 수량에 미치는 영향)

  • 정진일;최원영;최민규;이선용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.6
    • /
    • pp.747-756
    • /
    • 1995
  • To find out the optimum application method of slow-releasing fertilizer(SRF) and conventional fertilizer(CF) with different fertilization rate under two culture methods[l0-day old seedling machine transplanting(MT) and direct-sowing on dry paddy(DS)] in the south-western region(clay loam soil) of Korea, used were Chosun slow-releasing fertilizer(silicate latex coated fertilizer: N-P$_2$O$_{5}$-K$_2$O =18-12-13) and conventional fertilizer. Plant height and number of tillers with different two culture methods were higher at MT than DS in early growth. The ratio of dry weight in heading stage was higher at CF than SRF in MT than DS and especially, SRF 80% + CF 20% than SRF 100% or CF 100%. Leaf area index (LAI) in heading stage was higher at CF in MT but higher at SRF in DS than their counterparts. Chlorophyll content was higher at SRF than in CF expect for heading stage(HS), especially in DS. It was highest at HS in CF without its difference during maximum tillering stage(MTS) and panicle formation stage(PFS), while highest at PFS in SRF with tendency of gradual increase and decrease before and after PFS, respectively. Heading was delayed 2~3 days at SRF in two cultrue methods and 4~5 days at SRF in DS in comparison with CF in MT with delay of 2 days at DS compared with MT. Culm length was longer at CF in MT and at SRF in DS than their counterparts. Panicle number per m was more at SRF and in DS. Filled grain ratio was higher at CF and in MT. Yield was obtained 101 and 100% at 100% and 80% level of SRF in DS respectively, and 96% at 80% level of CF in MT, compared with conventional application method (516kg /l0a), and increased 2~4% at DS and 0~3% at MT in SRF. Yield was high in order of 100%(SRF) =80%(SRF) + 20%(CF) > 100%(SRF) + 20%(CF) > 80%(SRF) at MT and 80%(SRF) + 20%(CF) =100%(SRF) > 80%(SRF) =100%(SRF) + 20%(CF) at DS.

  • PDF

Hydrochemistry and Noble Gas Origin of Various Hot Spring Waters from the Eastern area in South Korea (동해안지역 온천유형별 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Nagao, Keisuke;Kim, Kyu-Han;Choi, Hun-Kong;Sumino, Hirochika;Park, Ji-Sun;Park, Chung-Hwa;Lee, Jong-Ig;Hur, Soon-Do
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • The purpose of this study is to characterize the hydrogeochemical characteristics of hot spring waters and to interpret the source of noble gases and the geochemical environment of the hot spring waters distributed along the eastern area of the Korean peninsula. For this purpose, We carried out the chemical, stable isotopic and noble gas isotopic analyses for eleven hot spring water and fourteen hot spring gas samples collected from six hot spring sites. The hot spring waters except the Osaek hot spring water show the pH range of 7.0 to 9.1. However, the Osaek $CO_2$-rich hot spring water shows a weak acid of pH 5.7. The temperature of hot spring waters in the study area ranges from $25.7^{\circ}C$ to $68.3^{\circ}C$. Electrical conductivity of hot spring waters varies widely from 202 to $7,130{\mu}S/cm$. High electrical conductivity (av., $3,890{\mu}S/sm$) by high Na and Cl contents of the Haeundae and the Dongrae hot spring waters indicates that the hot spring waters were mixed with seawater in the subsurface thermal system. The type of hot springs in the viewpoint of dissolved components can be grouped into three types: (1) alkaline Na-$HCO_3$ type including sulfur gas of the Osaek, Baekam, Dukgu and Chuksan hot springs, and (2) saline Na-Cl type of the Haeundae and Dongrae hot springs, and (3) weak acid $CO_2$-rich Na-$HCO_3$ type of Osaek hot spring. Tritium ratios of the Haeundae and the Dongrae hot springs indicate different residence time in their aquifers of older water of $0.0{\sim}0.3$ TU and younger water of $5.9{\sim}8.8$ TU. The ${\delta}^{18}O$ and ${\delta}D$ values of hot spring waters indicate that they originate from the meteoric water, and that the values also reflect a latitude effect according to their locations. $^3He/^4He$ ratios of the hot spring waters except Osaek $CO_2$-rich hot spring water range from $0.1{\times}10^{-6}$ to $1.1{\times}10^{-6}$ which are plotted above the mixing line between air and crustal components. It means that the He gas in hot spring waters was originated mainly from atmosphere and crust sources, and partly from mantle sources. The Osaek $CO_2$-rich hot spring water shows $3.3{\times}10^{-6}$ in $^3He/^4He$ ratio that is 2.4 times higher than those of atmosphere. It provides clearly a helium source from the deep mantle. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.

Rationalization of Fertilizing and Development of Fetilizer (시비(施肥)의 합리화(合理化)와 비종개발(肥種開發))

  • Lim, Sun-Uk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.1
    • /
    • pp.49-50
    • /
    • 1982
  • The objective of this paper is to review the changes in fertilizer use pattern and to discuss some aspects of the fertilizer development in Korea. Fertilizer consumption in Korea have steadily increased to triple the application rates of N, P and K during the 15 years from 1965 to 1980, and Korea became one of the countries which apply fertilizers at the highest rate. The ratio of N: $P_2O_5$: $K_2O$ in fertilizer consumption changed from 55.4 : 31.4 : 13.1 in 1965 to 54.0 : 23.8 : 22.2 in 1980. It can be said that Korean farmers practise a balanced fertilization at least in view of fertilizer consumption as compared to other developing countries. However, differences in soil properties, crops, and climate varying as region were not reflected on fertilization. In the technological development of fertilizer, the chemical form and composition of the fertilizer as well as the suitability to the specific crops must be taken into consideration for the efficient use of fertilizers. Although organic fertilizers and manure are accepted as minor element suppliers, it is necessary to add minor elements into chemical fertilizers on the industrial process. Industrial waste may be used for the agricultural production as a measure of pollution control providing careful study on the waste.

  • PDF

Analytical Studies on Yield and Yield Components in Barley (대맥의 수량 및 수량구성요소에 관한 해석적 연구)

  • Chung-Yun Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.18
    • /
    • pp.88-123
    • /
    • 1975
  • To obtain useful fundamental informations for improving cultural practices of barley, an investigation was made on the influences of different fertilizer level and seeding rate as well as seeding date on yield and yield components and their balancing procedure using barley variety Suwon # 18, and at the same time, 8 varieties including Suwon # 18 were also tested to clarify the varietal responses in terms of their yield and yield components under different seeding date at Crop Experiment Station, Suwon, during the period of 1969 and 1970. The results obtained were summarized as follows; 1. Days to emergence of barley variety Suwon # 18 at Suwon, took 8 to 19 days in accordance with given different seeding date (from Sept. 21 to Oct. 31). Earlier emergence was observed by early seeding and most of the seeds were emerged at 15$0^{\circ}C$ cumulated soil temperature at 5cm depth from surface under the favorable condition. 2. Degree of cold injury in different seeding date was seemed to be affected by the growth rate of seedlings and climatic condition during the wintering period. Over growth and number of leaves less than 5 to 6 on the main stem before wintering were brought in severe cold damage during the wintering period. 3. Even though the number of leaves on the main stem were variable from 11 to 16 depending upon the seeding date. this differences were occurred before wintering and less variation was observed after wintering. Particularly, differences of the number of main stem leaves from September 21 to October 11 seeding date were occurred due to the differences of number of main stem leaves before wintering. 4. Dry matter accumulation before wintering was high in early seeded plot and gradually decreased in accordance with delayed seeding date and less different in dry matter weight was observed after wintering. However, the increment rate of this dry matter was high from regrowth to heading time and became low during the ripening period. 5. Number of tillers per $\m^2$ was higher in early seeding than late one and dense planting was higher in the number of tillers than sparse planting. Number of tillers per plant was lower in number and variation in dense planting, and reverse tendency was observed in sparse planting. By increasing seedling rate in early seeding date the number of tiller per plant was remarkably decreased, but the seeding rate didn't affect the individual tillering capacity in the late seeding date. 6. Seedlings were from early planting reached maximum tillering stage earlier than those from the late planting and no remarkable changes was observed due to increased seeding rate. However. increased seeding rate tends to make it earlier the maximum tillering stage early. 7. Stage of maximum tillering was coincided with stage of 4-5 main stem leaves regardless the seeding date. 8. Number of heads per $\m^2$ was increased with increased seeding rate but considerable year variation in number of heads was observed by increased fertilizer level. Therefore, it was clear that there is no difficulties in increasing number of heads per $\m^2$ through increasing both fertilizer level and seeding rate. This type of tendency was more remarkable at optimum seeding time. In the other hand, seeding at optimum time is more important than increasing seeding rate, but increasing seeding rate was more effective in late seeding for obtaining desirable number of heads per $\m^2$. 9. Number of heads per $\m^2$ was decreased generally in all varieties tested in late seeding, but the degree of decrease by late seeding was lower in Suwon # 18. Yuegi, Hangmi and Buheung compared with Suwon # 4, Suwon # 6, Chilbo and Yungwolyukak. 10. Highly significant positive correlations were obtained between number of head and tillers per $\m^2$ from heading date in September 21 seeding, from before-wintering in October 1 seeding and in all growth period from October 11 to October 31 seeding. However, relatively low correlation coefficient was estimated between number of heads and tillers counted around late March to early April in any seeding date. 11. Valid tiller ratio varied from 33% to 76% and highest yield was obtained when valid tiller ratio was about 50%. Therefore, variation of valid tiller ratio was greater due to seeding date differences than due to seeding rate. Early seeding decreased the valid tiller ratio and gradually increased by delaying seeding date but decreased by increasing seeding rate. Among the varieties tested Suwon # 18, Hangmi, Yuegi as well as Buheung should be high valid tiller ratio not only in late seeding but also in early seeding. In contrast to this phenomena, Chilbo, Suwon # 4, Suwon # 6 and Yungwolyukak expressed low valid tiller ratio in general, and also exhibited the same tendency in late seeding date. 12. Number of grains per spike was increased by increasing fertilizer level and decreased by increasing seeding rate. Among the seeding date tested. October 21 (1969) and October 11 (1970) showed lowest number of grains per spike which was increased in both early seeding and late seeding date. There were no definite tendencies observed along with seeding date differences in respective varieties tested. 13. Variation of 1000 grain weight due to fertilizer level applied, seeding date and seeding rate was not so high as number of grains per spike and number of heads per $\m^2$, but exhibited high year variation. Increased seeding rate decreased the 1000 grain weight. Among the varieties tested Chilbo and Buheung expressed heavy grain weight, while Suwon # 18, Hangmi and Yuegi showed comparatively light grain weight. 14. Optimum seeding date in Suwon area was around October 1 to October 11. Yield was generally increased by increasing fertilizer level. Yield decrease due to early seeding was compensated in certain extent by increased fertilizer application. 15. Yield variations due to seeding rate differences were almost negligible compare to the variations due to fertilizer level and seeding date. In either early seeding or law fertilizer level yield variation due to seeding rate was not so remarkable. Increment of fertilizer application was more effective for yield increase especially at increased seeding rate. And also increased seeding rate fairly compensated the decrease of yield in late seeding date. 16. Optimum seeding rate was considered to be around 18-26 liters per 10a at N-P-K=10.5-6-6 kg/10a fertilizer level considering yield stabilization. 17. Varietal differences in optimum seeding date was quite remarkable Suwon # 6, Suwon # 4. Buheung noted high yield at early seeding and Suwon # 18, Yuegi and Hangmi yielded higher in seeding date of October 10. However, Buheung showed late seeding adaptability. 18. Highly significant positive correlations were observed between yield and yield components in all treatments. However, this correlation coefficient was increased positively by increased fertilizer level and decreased by increased seeding rate. Significant negative correlation coefficients were estimated between yield and number of grains per spike, since increased number of heads per m2 at the same level of fertilizer tends to decrease the number of grains per spike. Comparatively low correlation coefficients were estimated between 1000 grain weight and yield. 19. No significant relations in terms of correlation coefficients was observed between number of heads per $\m^2$ and 1000 grain weight or number of grains per head.

  • PDF

Effects of Nitrogen , Phosphorus and Potassium Application Rates on Oversown Hilly Pasture under Different Levels of Inclination II. Changes on the properties, chemical composition, uptake and recovery of mineral nutrients in mixed grass/clover sward (경사도별 3요소시용 수준이 겉뿌림 산지초지에 미치는 영향 II. 토양특성 , 목초의 무기양분함량 및 3요소 이용율의 변화)

  • 정연규;이종열
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.3
    • /
    • pp.200-206
    • /
    • 1985
  • This field experiment was undertaken to assess the effects of three levels of inclination ($10^{\circ},\;20^{\circ},\;and\;30^{\circ}$) and four rates of $N-P_2O_5-K_2O$ (0-0-0-, 14-10-10, 28-25-25, and 42-40-40kg/10a) on establishment, yield and quality, and botanical compositions of mixed grass-clover sward. This second part is concerned with the soil chemical properties, concentrations and uptake of mineral nutrients, and percent recovery and efficiency of NPK. The results obtained after a two-year experiment are summarized as follows: 1. The pH, exchangeable Mg and Na, and base saturation in the surface soils were decreased by increasing the grade of inclination, whereas organic matter and available $P_2O_5$ tended to be increased. However, the changes in the Ca content and equivalent ratio of $K\sqrt{Ca+Mg}$ were not significant. The pH, exchangeable Ca and Mg, and base saturation were reduced by increasing the NPK rate, whereas available $P_2O_5$, exchangeable K, and equivalent ratio of $K\sqrt{Ca+Mg}$ tended to be increased. 2. The concentrations of mineral nutrients in grasses and weeds were not significantly affected by increasing the grade of slope in hilly pasture, whereas the concentrations of N, K, and Mg in legume were the lowest with the steep slope, which seemed to be related to the low legume yield. The Mg concentrations of all forage species were below the critical level for good forage growth and likelihood of grass tetany. 3. The increase of NPK rate resulted in the increment of N, K and Na concentrations, and the decrease of Mg and Ca in grasses. The P concentration was increased with P application, but there were no differences in that among the P rates applied. It resulted also in a slight increase of K, and a decrease of Mg in legume, but the contents of N, Ca, and Na were not affected by that. On the other hand, it has not affected the mineral contents in weeds except a somewhat increase of N. The mixed forages showed a increase of N and K contents, a decrease of Ca and Mg, and a slight change in P and Na. 4. The percent recovery of N, P and K by mixed forages were greatly decreased by increasing the grade of inclination and NPK rate. They were high in the order; K>N>P. The efficiency of mixed NPK applications was decreased by that. The efficiency of mixed NPK fertilizers absorbed was slightly decreased by the increased rate of NPK, but it was not affected by the grade of inclination.

  • PDF