• Title/Summary/Keyword: The Primary and The Secondary Design

Search Result 533, Processing Time 0.022 seconds

Energy Consumption Evaluation in Pumping System with Different Building Characteristics (건물 특성에 따른 냉수 순환 펌핑 시스템 별 에너지 소모량 분석)

  • Shin, Dong-Shin;Park, Sung-Bin;Jun, Tae-Ik;Ma, Kang-Il;Kim, Tae-Hong;Lee, Sung-Goo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.242-247
    • /
    • 2016
  • This study analyzed the energy consumption of a building pump system that was originally equipped with a primary-secondary zone pump system. Using the HYSYS program the energy consumption of the primary pump system was compared with the primary-secondary zone pump system. The primary-secondary zone pump system consumes less energy than the originally designed primary pump system. When the distance between the machine room and each building is assumed to be equal, the primary pump system can be more efficient than the primary-secondary zone pump system with decreasing the distance. When the distance is 120 m, the primary system consumes less total annual energy than the primary-secondary zone pump system and saves 2,773 kWh. The suggested energy evaluation program can be useful if the designer seeks a more efficient pump system.

Design of the secondary tunnel lining using a ground-primary support-secondary lining interaction model

  • Chang, Seok-Bue;Seo, Seong-Ho;Lee, Sang-Duk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.109-114
    • /
    • 2003
  • It is the common practice to reinforce excessively the secondary tunnel lining due to the lack of rational insights into the ground loosening loads. The main load of the secondary lining for drained-type tunnels is the ground loosening. The main cause of the load for secondary tunnel lining is the deterioration of the primary support members such as shotcrete, steel ribs, and rockbolts. Accordingly, the development of the analysis model to consider the ground-primary supports-secondary lining interaction is very important for the rational design of the secondary tunnel lining. In this paper, the interaction is conceptually described by the simple mass-spring model and the load transfer from the primary supports to the ground and the secondary lining is showed by the characteristic curves including the secondary lining reaction curve for the theoretical solution of a circular tunnel. And also, the application of this model to numerical analysis is verified in order to review the potential tool for practical tunnel problems with the complex conditions like non-circular shaped tunnels, multi-layered ground, sequential excavation and so on.

  • PDF

An Analysis Model of the Secondary Tunnel Lining Considering Ground-Primary Support-Secondary Lining Interaction (지반-1차지보재-2차라이닝의 상호작용을 고려한 터널 2차라이닝 해석모델)

  • 서성호;장석부;이상덕
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.107-114
    • /
    • 2002
  • It is the common practice to over design the reinforcement for the secondary tunnel lining due to the lack of rational insight into the ground loosening loads. and due to the conservative application of the empirical design methods. The main loads of the secondary lining are the ground Loosening loads and the ground water pressure, and the ground load is critical in the reinforcement design of the secondary lining in the case of drained tunnel. If the external load is absent around a tunnel, the reasons of the load far secondary tunnel lining are the deterioration of the primary supports such as shotcrete, steel rib, and rockbolts. Accordingly, the analysis method considering the ground-primary supports-secondary lining interaction should be required tar the rational design of the secondary tunnel lining. In this paper, the interaction was conceptually described by the simple mass-spring model and the load transfer from the ground and primary supports to the secondary lining is showed by the ground-primary supports-secondary lining reaction curves fur the theoretical solution of a circular tunnel. And also, the application of this proposed model to numerical analysis is verified in order to check the potential far the tunnel with the complex analysis conditions.

Effects of Risering Design and Alloying Element on Formation of Shrinkage Cavity in Ductile Cast Iron (구상흑연주철의 수축결함생성에 미치는 주조방안 및 합금원소의 영향)

  • Yu, Sung-Kon
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.74-80
    • /
    • 2003
  • The effects of risering design and alloying element on the formation of defects such as external depression, primary and secondary shrinkage cavities in ductile cast iron were investigated. Two types of risering design for the cylindrically step-wise specimen, No. 1(progressive solidification) and No. 2(directional solidification) risering designs, were prepared and six different alloy compositions were casted. In the No. 1 risering design, external depression or primary shrinkage cavities due to liquid contraction were observed in all the specimens from SG 10 to SG 60. The defects caused by liquid contraction seemed to be more affected by risering design than alloying elements. The secondary shrinkage cavities were also observed in all the specimens but a swollen surface was not observed in all the castings. The primary shrinkage cavities were located right under the top surface or connected to the top surface, and were characterized by smooth surfaces. On the other hand, the secondary shrinkage cavities were positioned in the thermal center of the specimen steps 3 and 4, and characterized by rough surfaces. In the No. 2 risering design, no external depression or primary shrinkage cavities due to liquid contraction were observed in all the specimens from SG 10 to SG 60. However, the secondary shrinkage cavities were formed in the thermal center of specimens SG 40, 50 and 60. Like the No. 1 risering design, a swollen surface was not observed in all the castings.

A Design Problem of a System Working at Both Primary Service and Secondary Service (주서비스와 보조서비스를 갖는 시스템 설계)

  • Kim, Sung-Chul
    • Korean Management Science Review
    • /
    • v.28 no.3
    • /
    • pp.15-29
    • /
    • 2011
  • In this paper, we consider a system working at both primary service and secondary service. A server can switch between the primary service and the secondary service or it can be assigned to secondary service as a dedicated server. A service policy is characterized by the number of servers dedicated to the secondary service and a rule for switching the remaining servers between two services. The primary service system is modelled as a Markovian queueing system and the throughput is a function of the number of servers, buffer capacity, and service policy. And the secondary service system has a service level requirement strategically determined to perform the service assigned. There is a revenue obtained from throughput and costs due to servers and buffers. We study the problem of simultaneously determining the optimal total number of servers, buffers, and service policy to maximize profit of the system subject to both an expected customer waiting time constraint of the primary service and a service level constraint of the secondary service and develop an algorithm which can be successfully applied with the small number of computations.

An Experimental Study on the NOx Formation of Fuel Staged Combustor (연료다단 연소기의 NOx 발생특성에 관한 실험적 연구)

  • 정진도;안국영;한지웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.73-79
    • /
    • 2003
  • The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 ㎿) in a laboratory furnace and Liquefied Petroleum Gas(LPG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, primary/secondary air ratio, primary swirl intensity and secondary swirl intensity for reducing NOx emission. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

The experimental study on the NOx formation of fuel staged combustor (연료다단 연소기의 NOx 발생특성에 관한 실험적 연구)

  • Han, Ji-Woong;Ahn, Kook-Young;Kim, Han-Seok;Chung, Jin-Do
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.163-171
    • /
    • 2001
  • The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot Dame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Petroleum Gas(LPG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, primary/secondary air ratio, primary swirl intensity and secondary swirl intensity for reducing NOx emission. The test demonstrated that NOx emission can be reduced by ${>}$70% in accordance with operating conditions.

  • PDF

Analysis of Primary and Secondary Thrust of a Metal Belt CVT Part I : New Formula for Speed Rtio-Torque-Thrust Relationship Considering Band Tension and Block Compression (금속벨트 CVT 의 구동 및 종동 드러스트 해석 Part I : 밴드 장력과 블록 압축력을 고려한 새로운 변속비-토크-트러스트 관계식)

  • 이희라;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.132-142
    • /
    • 1999
  • In this paper, a new formula for primary and secondary thrust of metal belt CVT is proposed considering variation of band tension, block compression and active arc for each of the primary and secondary pulleys. For the secondary thrust, effective friction coefficient is introduced considering the effect of flange deflection. Nondimensional primary and secondary thrust of the metal belt CVT by the new formula agree well with the experimental results except for low torque range, $0\;<\;{\lambda}\;<\;0.2$ at speed ration i = 1.0. The new formula can be used in design of the primary and secondary thrusts control system for the metal belt CVT.

  • PDF

Effect of Design Thinking-based STEAM Program for Primary and Secondary Students (초·중등학생을 위한 디자인적 사고기반의 STEAM교육 프로그램의 효과)

  • Kim, Se Mi;Kim, Jeong Kyoum;Kim, Sung Ho;Maeng, Joon Hee
    • Journal of Engineering Education Research
    • /
    • v.21 no.2
    • /
    • pp.17-27
    • /
    • 2018
  • This study aims to investigate the effect of design thinking-based STEAM program for primary and secondary students. The design thinking-based STEAM program dealt with advanced scientific technology issues and it consisted of 8 topics. A questionnaire was developed to explore the change of Science concept awareness, Interest, Self-efficacy, Career consciousness of students through the program. The questionnaire consisted of following 4 areas, such as 'Science concept awareness', 'Interest', 'Career consciousness' and 'Self efficacy'. Pre-post test was conducted to 75 primary and secondary students. As a result of analyzing post-test compared to pre-test, 'Science concept awareness', 'Career consciousness' and 'Self efficacy' of students were improved. And the 'Interest' wasn't changed significantly. Through this research, it can be suggested that the design thinking-based STEAM program can be useful at school education to improve the Science concept awareness, Career consciousness and Self-efficacy of primary and secondary students. It is also proposed that further research of the various areas of interest and other affective variables will be needed.

Optimum Design of Suspension Characteristics for Light Rail Vehicle (관절형 경량전철의 현가특성 최적설계)

  • Heo, Sin;Ha, Seong-Do
    • 연구논문집
    • /
    • s.27
    • /
    • pp.35-45
    • /
    • 1997
  • The dynamic design process for the articulated bogie of light rail vehicle(LRV) was studied to design a primary and secondary suspension elements. Suspension stiffness and damping is selected on the basis of the ride quality and suspension stroke trade-off. LRV was modeled as a 2 d.o.f linear system for the design of vertical suspension characteristics and a 4 d.o.f linear system for the design of lateral suspension characteristics. FRA's class-4-track irregularity was used for the exciting disturbance on track. The optimum value of primary and secondary suspension characteristics was determined using this design process.

  • PDF