• Title/Summary/Keyword: The Least Squares Method

Search Result 1,469, Processing Time 0.034 seconds

Association between mandibular occlusal morphology and occlusal curvature (교합면의 해부학적 형태와 교합만곡의 연관성에 대한 연구)

  • Nam, Shin-Eun;Lee, Heekyung
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.217-224
    • /
    • 2016
  • Purpose: This study aimed to generate 3-D occlusal curvatures and evaluate the relationship between the occlusal curvatures and mandibular occlusal morphology factors. Methods: Mandibular dental casts from 25 young adult Korean were scanned as a virtual dental models with a 3-D scanner(Scanner S600, Zirkonzahn, Italy). The curve of Spee, curve of Wilson, and Monson's sphere were generated by fitting a circle/sphere to the cusp tips using a least-squares method. The mandibular mesiodistal cusp inclination, buccolingual cusp inclination, and tooth wear parameters were measured on the prepared virtual models using RapidForm2004(INUS technology INC, Seoul, Korea). Wilcoxon signed-rank test was performed to test side difference, and Spearman's rank correlation coefficients were investigated to verify the correlation between occlusal curvatures and correlated factors (a=0.05). Results: The mean radii of curve of Spee were $83.09{\pm}33.94$ in the left side and $79.00{\pm}28.12mm$ in the right side. The mean radii of curve of Wilson were $66.82{\pm}15.87mm$ in the mesial side and $47.87{\pm}9.40mm$ in the distal side with significantly difference between mesiodistal sides(p<0.001). The mean radius of Monson's sphere was $121.85{\pm}47.11mm$. Most of the cusp inclination parameters showed negative correlation for the radius of Monson' sphere(p<0.05). Especially, the buccolingual cusp inclinations in mesial side of molar showed high correlation coefficients among the factors(p<0.05). Conclusion: The radius of Monson's sphere was greater than the classical 4-inch values, and the buccolingual cusp inclinations in mesial side of molar can be considered as one of the main factors correlating with the radius of Monson's sphere.

Bitcoin Distribution in the Age of Digital Transformation: Dual-path Approach

  • Lee, Won-Jun;Hong, Seong-Tae;Min, Taeki
    • Journal of Distribution Science
    • /
    • v.16 no.12
    • /
    • pp.47-56
    • /
    • 2018
  • Purpose - The potential use of cryptocurrencies in a retail environment proposes a rapid shift from the traditional financial system. Nakamoto(2008) defines Bitcoin as an open source alt-coin based on the blockchain technology. Luther(2016) insists that the new technology will be widely adopted for the digital payment processes. However, the use of Bitcoin is in the real world is still sparse. Despite the growing attention and purported benefits, it is doubtful whether the Bitcoin will be eagerly accepted by ordinary consumers in the mainstream market. To answer this question, this paper develops a causal model that has a dual path to explain the motivation to adopt Bitcoin. According to Glaser, Zimmermann, Haferkorn, Weber, and Siering(2014), Bitcoin is both an asset and a currency at the same time. In summary, the attitude towards Bitcoin may vary depending on whether the fin-tech product is viewed as an asset or as a currency. Based on the arguments, we propose that asset attitude and currency attitude will give influence to consumers' intention to adopt Bitcoin. Research design, data, and methodology - Quantitative data collection is conducted from a Bitcoin SIG(special interest group) working in an internet community. As a result, 192 respondents who know Bitcoin completed the survey. To analyze the causal relations in the research model, PLS-SEM(partial least squares structural equation modeling) method is used. Also, reliability and validity of measures are tested by performing Cronbach's alpha test, Fornell-Larcker test and confirmatory factor test. Results - Our test results show that every hypothesis is supported except the influence of perceived ease of use. In addition, we find that the relationships between constructs are different between the high innovative group and low innovative group. Conclusions - We provide evidence that asset attitude and currency attitude are key antecedents of Bitcoin adoption.

Wavelength selection by loading vector analysis in determining total protein in human serum using near-infrared spectroscopy and Partial Least Squares Regression

  • Kim, Yoen-Joo;Yoon, Gil-Won
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4102-4102
    • /
    • 2001
  • In multivariate analysis, absorbance spectrum is measured over a band of wavelengths. One does not often pay attention to the size of this wavelength band. However, it is desirable that spectrum is measured at only necessary wavelengths as long as the acceptable accuracy of prediction can be met. In this paper, the method of selecting an optimal band of wavelengths based on the loading vector analysis was proposed and applied for determining total protein in human serum using near-infrared transmission spectroscopy and PLSR. Loading vectors in the full spectrum PLSR were used as reference in selecting wavelengths, but only the first loading vector was used since it explains the spectrum best. Absorbance spectra of sera from 97 outpatients were measured at 1530∼1850 nm with an interval of 2 nm. Total protein concentrations of sera were ranged from 5.1 to 7.7 g/㎗. Spectra were measured by Cary 5E spectrophotometer (Varian, Australia). Serum in the 5 mm-pathlength cuvette was put in the sample beam and air in the reference beam. Full spectrum PLSR was applied to determine total protein from sera. Next, the wavelength region of 1672∼1754 nm was selected based on the first loading vector analysis. Standard Error of Cross Validation (SECV) of full spectrum (1530∼l850 nm) PLSR and selected wavelength PLSR (1672∼1754 nm) was respectively 0.28 and 0.27 g/㎗. The prediction accuracy between the two bands was equal. Wavelength selection based on loading vector in PLSR seemed to be simple and robust in comparison to other methods based on correlation plot, regression vector and genetic algorithm. As a reference of wavelength selection for PLSR, the loading vector has the advantage over the correlation plot since the former is based on multivariate model whereas the latter, on univariate model. Wavelength selection by the first loading vector analysis requires shorter computation time than that by genetic algorithm and needs not smoothing.

  • PDF

Operational Reliability Analysis of Guided Weapon Systems (유도무기 시스템의 운용 신뢰도 분석)

  • Ha, Ju Seok;Kim, Kyung Mo
    • Convergence Security Journal
    • /
    • v.17 no.3
    • /
    • pp.95-101
    • /
    • 2017
  • Reliability is the priority matter in guided weapon systems. The reliability prediction data is used during the devel opment stage as the manufacturing cost is very high and the production quantity if quite limited. At the same time it takes relatively a long period of time to acquire a reliable operation data set after deployment such that in order t o determine the operational reliability, weapons must be tested and analyzed in real operating environments. For the research, the life distributions were estimated by using actual operation data and the reliability was calculated by ap plying the method of least squares and maximum likelihood estimation. Also, the comparisons were made between pr edicted reliability and actual operational reliability. As a result, the actual reliability of each system was higher than predicted reliability and it was considered that such a difference was caused by the fact that the application of the l atest designing technology and improved parts to the guided weapon systems was not reflected on the estimation of predicted reliability. It was possible to confirm the actual operational reliability of domestic (ROK) guided weapon sy stems through this research and the methods used here will contribute to the reliability analyses for the future guide d weapon systems to be developed.

Busan Housing Market Dynamics Analysis with ESDA using MATLAB Application (공간적탐색기법을 이용한 부산 주택시장 다이나믹스 분석)

  • Chung, Kyoun-Sup
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.461-471
    • /
    • 2012
  • The purpose of this paper is to visualize the housing market dynamics with ESDA (Exploratory Spatial Data Analysis) using MATLAB toolbox, in terms of the modeling housing market dynamics in the Busan Metropolitan City. The data are used the real housing price transaction records in Busan from the first quarter of 2006 to the second quarter of 2009. Hedonic house price model, which is not reflecting spatial autocorrelation, has been a powerful tool in understanding housing market dynamics in urban housing economics. This study considers spatial autocorrelation in order to improve the traditional hedonic model which is based on OLS(Ordinary Least Squares) method. The study is, also, investigated the comparison in terms of $R^2$, Sigma Square(${\sigma}^2$), Likelihood(LR) among spatial econometrics models such as SAR(Spatial Autoregressive Models), SEM(Spatial Errors Models), and SAC(General Spatial Models). The major finding of the study is that the SAR, SEM, SAC are far better than the traditional OLS model, considering the various indicators. In addition, the SEM and the SAC are superior to the SAR.

Nonlinear Characteristics of Non-Fuzzy Inference Systems Based on HCM Clustering Algorithm (HCM 클러스터링 알고리즘 기반 비퍼지 추론 시스템의 비선형 특성)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5379-5388
    • /
    • 2012
  • In fuzzy modeling for nonlinear process, the fuzzy rules are typically formed by selection of the input variables, the number of space division and membership functions. The Generation of fuzzy rules for nonlinear processes have the problem that the number of fuzzy rules exponentially increases. To solve this problem, complex nonlinear process can be modeled by generating the fuzzy rules by means of fuzzy division of input space. Therefore, in this paper, rules of non-fuzzy inference systems are generated by partitioning the input space in the scatter form using HCM clustering algorithm. The premise parameters of the rules are determined by membership matrix by means of HCM clustering algorithm. The consequence part of the rules is represented in the form of polynomial functions and the consequence parameters of each rule are identified by the standard least-squares method. And lastly, we evaluate the performance and the nonlinear characteristics using the data widely used in nonlinear process. Through this experiment, we showed that high-dimensional nonlinear systems can be modeled by a very small number of rules.

Application of Area Based Matching for the Automation of Interior Orientation (내부표정의 자동화를 위한 영역중심 영상정합기법 적용)

  • 유복모;염재홍;김원대
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.4
    • /
    • pp.321-330
    • /
    • 1999
  • Automation of observation and positioning of fiducial marks is made possible with the application of image matching technique, developed through the cooperative research effort of computer vision and digital photogrammetry. The major problem in such automation effort is to minimize the computing time and to increase the positional accuracy. Except for scanning and ground control surveying, the interior orientation process was automated in this study, through the development of an algorithm which applies the image matching and image processing techniques. The developed system was applied to close-range photogrammetry and the analysis of the results showed 54% improvement in processing time. For fiducial mark observation during interior orientation, the Laplacian of Gaussian transformation and the Hough transformation were applied to determine the accurate position of the center point, and the correlation matching and the least squares matching method were then applied to improve the accuracy of automated observation of fiducial marks. Image pyramid concept was applied to reduce the computing time of automated positioning of fiducial mark.

  • PDF

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.

Melon Surface Color and Texture Analysis for Estimation of Soluble Solids Content and Firmness

  • Suh, Sang-Ryong;Lee, Kyeong-Hwan;Yu, Seung-Hwa;Shin, Hwa-Sun;Choi, Young-Soo;Yoo, Soo-Nam
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.252-257
    • /
    • 2012
  • Purpose: The net rind pattern and color of melon surface are important for a high market value of melon fruits. The development of the net and color are closely related to the changes in shape, size, and maturing. Therefore, the net and color characteristics can be used indicators for assessment of melon quality. The goal of this study was to investigate the possibility of estimating melon soluble solids content (SSC) and firmness by analyzing the net and color characteristics of fruit surface. Methods: The true color images of melon surface obtained at fruit equator were analyzed with 18 color features and 9 texture features. The partial least squares (PLS) method was used to estimate SSC and firmness in melons using their color and texture features. Results: In sensing melon SSC, the coefficients of determination of validation (${R_v}^2$) of the prediction models using the color and texture features were 0.84 (root mean square error of validation, RMSEV: 1.92 $^{\circ}Brix$) and 0.96 (RMSEV: 0.60 $^{\circ}Brix$), respectively. The ${R_v}^2$ values of the models for predicting melon firmness using the color and texture features were 0.64 (RMSEV: 4.62 N) and 0.79 (RMSEV: 2.99 N), respectively. Conclusions: In general, the texture features were more useful for estimating melon internal quality than the color features. However, to strengthen the usefulness of the color and texture features of melon surface for estimation of melon quality, additional experiments with more fruit samples need to be conducted.

Derivation of Probable Rainfall Intensity Formulas at Inchon District (인천지방 확률강우강도식의 유도)

  • Choe, Gye-Un;An, Tae-Jin;Gwon, Yeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.263-276
    • /
    • 2000
  • This paper is to derive the probable rainfall depths and the probable rainfall intensity formulas for Inchon Metropolitan district. The annual maximum rainfall data from 10 min. to 6 hours have been collected from the Inchon weather station. Eleven types of probability distribution are considered to estimate probable rainfall depths for 12 different storm durations at the Inchon Metropolitan district. Three tests including Chi-square, Kolmogorov-Smimov and Cramer Von Mises with the graphical analysis are adopted to select the best probability distribution. The probable rainfall intensity formulas are then determined by the least squares method using the trial and error approach. Five types of Talbot type, Sherman type, Japanese type, Unified type I, and Unified type II are considered to determine the best type for the Inchon rainfall intensity. The root mean squared errors are computed to compare the accuracy from the derived formulas. It has been suggested that the probable rainfall intensities having Unified type I for the short term duration should be the most reliable formulas by considering the root mean squared errors and the difference between computed probable rainfall depth and estimated probable rainfall depth.

  • PDF