X-선 회절법을 이용하여 $C_{16}H_{19}O_2N_3CuCl_2\;{\cdot}\;H_2O$의 분자 및 결정구조를 해석하였다. 이 결정의 결정계는 Triclinic이고 공간군은 Pl이며, 단위포 상수는 $a=7.6202(9)\;{\AA},\;b=8.5943(7){\AA},\;c= 8.6272(6){\AA},\;\alpha=67.518(6)^{\circ},\; \beta= 68.043(8)^{\circ},\;\gamma=74.370(8)^{\circ},\;V=478.89(8)\;{\AA}^3,\;T=295K,\; Z=1,\;D_c=1.504Mgm^{-3}$이다. 회절반점들의 세기는 Enraf-Nonius CAD-4 Diffractometer로 얻었으며 graphite로. 단색화한 $MoK{\alpha}$,$(\alpha=0.7107\;\AA)$을 사용하였다. 분자구조는 Direct method로 풀었으며, $F_0>4\sigma(F_0)$인 1659개의 독립회절데이터에 대하여 최소 자승법으로 234개의 변수를 정밀화하여 최종 신뢰도 값 $R=2.47\%$를 얻었다.
X 선 회절법은 물질 내부에 원자의 배열 상태를 연구하는데 널리 사용되는 실험 방법으로써 넓은 응용 범위를 가지고 있다. 특히 분말 X 선 회절법은 비파괴적으로 다양한 형태의 시료에 대한 측정이 가능하기 때문에 결정의 배향성, 결정의 크기, 결정 내부의 응력 측정 등에 널리 이용되고 있다. 분말 X 선 회절 방법을 이용하여 혼합물의 성분을 정량적으로 측정하기 위해서는 시료를 구성하고 있는 source 스펙트럼을 도출하고 혼합된 시료의 XRD 스펙트럼에 회귀식을 적합시켜 혼합물 구성비를 얻는 방법이 제안된 바 있다. 그러나 구성성분의 특성상 스펙트럼의 피이크가 폭이 좁고 민감한 경우에는 노이즈의 영향을 받아 도출된 source 스펙트럼이 원래의 순수성분의 형태와 달리 나타날 수 있다. 특히 순수성분 시료를 구할 수 없거나 측정이 불가능한 경우 혼합물 구성비 측정에 어려움이 있다. 본 연구에서는 노이즈 간섭에 의한 source 스펙트럼 도출의 문제를 해결하는 방안으로 비음독립성분분석을 이용하여 혼합된 미지시료로부터 순수한 성분에 해당하는 스펙트럼을 분리해내는 방법을 제안하고자 한다.
The $PM_{10}$ concentrations in the underground should be monitored for the health of commuters on the underground subway system. Seoul Metro and Seoul Metropolitan Rapid Transit Corporation are measuring several air pollutants regularly. As for the measurement of $PM_{10}$ concentrations, instruments based on $\beta$-ray absorption method and gravimetric methods are being used. But the instruments using gravimetric method give us 20-hour-average data and the $\beta$-ray instruments can measure the $PM_{10}$ concentration every one hour. In order to keep the $PM_{10}$ concentrations under a healthy condition, the air quality of the underground platform and tunnels should be monitored and controlled continuously. The $PM_{10}$ instruments using light scattering method can measure the $PM_{10}$ concentrations every less than one minute. However, the reliability of the instruments using light scattering method is still not proved. The purpose of this work is to study the reliability of the instruments using light scattering method to measure the $PM_{10}$ concentrations continuously in the underground platforms. One instrument using $\beta$-ray absorption method and two different instruments using light scattering method (LSM1, LSM2) were placed at the platform of the Jegi station of Seoul metro line Number 1 for 10 days. The correlation between the $\beta$-ray instrument and the LSM2 ($r^2$=0.732) was higher than that between the $\beta$-ray instrument and the LSM1 ($r^2$=0.393). Thus the LSM2 was chosen for further analysis. Three different regression analysis methods were tested: Linear regression analysis, Nonlinear regression analysis and Orthogonal regression analysis. When the instruments using light scattering method were used, the data measured these instruments have to be converted to actual $PM_{10}$ concentrations using some factors. With these analyses, the factors could be calculated successfully as linear and nonlinear forms with respect to the data. And the orthogonal regression analysis was performed better than the ordinary least squares method by 28.45% reduction of RMSE. These findings propose that the instruments using light scattering method light scattering method can be used to measure and control the $PM_{10}$ concentrations of the underground subway stations.
항공기와 같은 복잡한 구조물의 유한요소해석을 위해 자동요소망을 생성하면 일반적으로 삼각형 요소가 많이 생성되게 된다. 하지만 삼각형 요소는 사각형 요소에 비해 정확도가 떨어지므로 신뢰성 있는 해를 도출하기 어렵다. 이와 같은 문제는 배경셀 적분을 이용한 무요소법(Meshfree Method)을 통해 개선할 수 있으나 이 또한 적분점의 과다사용, 적분영역의 비효율성 등의 문제가 발생하게 된다. 이를 개선하기 위해 절점 기준으로 적분영역을 설정하여 적분을 수행하는 방법이 제안되었지만 비압축성 문제의 경우 해의 진동현상이 일어나는 등 수치 정확도가 떨어지게 된다. 따라서 본 연구에서는 적분영역을 절점영역이 아닌 요소영역으로 설정하는 수정된 무요소법을 통해 요소의 형태에 따른 정확도 저하가 발생되지 않고 기존의 무요소법에서 발생되는 수치 불안정성 등을 개선하였다. 2차원 예제를 통해 수정된 무요소법의 효용성을 검증하였다.
본 논문은 철도차량 및 자동차용 패널의 진동 및 소음억제용으로 사용되는 감쇠 처리재의 감쇠특성 평가에 관한 연구이다. 감쇠재의 모드별 매개변수들을 구하기 위해 다른 종류의 PVC를 알루미늄과 철계 빔위에 도포한 시편을 제작하여 가진시험을 수행하였다. 시편은 10 Hz부터 1,000 Hz까지의 주파수 대역을 조화력으로 가진하여 가속도계로 전달 모빌리티값을 측정하였다. 감쇠계수는 몇 가지 이론인 반력법, 최소 탄젠트오차법 및 최소 각오차법 조합법과 위상변화법을 모드 원호곡선 맞춤과 최소자승오차법을 사용하여 작성한 통합 프로그램을 이용하여 평가하였다. 감쇠값이 비교적 낮고 측정값이 선형인 경우는 어느 방법을 사용해도 되나, 감쇠값이 높거나 측정값에 비선형특성이 있는 경우에는 최소 각오차법이 감쇠계수 측정오차를 줄일 수 있다. 도포 감쇠재의 동적특성 평가로부터 구한 재료의 물성값은 차체나 철도차량 하부 기기함과 같이 복잡한 구조물의 소음해석을 위한 유한요소법에 사용할 수 있다. 빔 시험에서 수행한 모드별 감쇠계수의 특성 평가 결과 2차 이상 모드의 주파수 대역에서 감쇠 효과가 크기 때문에 구조소음억제에 유용할 것으로 사료된다.
In linear discriminant analysis there are two important properties concerning the effectiveness of discriminant function modeling. The first is the separability of the discriminant function for different classes. The separability reaches its optimum by maximizing the ratio of between-class to within-class variance. The second is the stability of the discriminant function against noises present in the measurement variables. One can optimize the stability by exploring the discriminant variates in a principal variation subspace, i. e., the directions that account for a majority of the total variation of the data. An unstable discriminant function will exhibit inflated variance in the prediction of future unclassified objects, exposed to a significantly increased risk of erroneous prediction. Therefore, an ideal discriminant function should not only separate different classes with a minimum misclassification rate for the training set, but also possess a good stability such that the prediction variance for unclassified objects can be as small as possible. In other words, an optimal classifier should find a balance between the separability and the stability. This is of special significance for multivariate spectroscopy-based classification where multicollinearity always leads to discriminant directions located in low-spread subspaces. A new regularized discriminant analysis technique, the principal discriminant variate (PDV) method, has been developed for handling effectively multicollinear data commonly encountered in multivariate spectroscopy-based classification. The motivation behind this method is to seek a sequence of discriminant directions that not only optimize the separability between different classes, but also account for a maximized variation present in the data. Three different formulations for the PDV methods are suggested, and an effective computing procedure is proposed for a PDV method. Near-infrared (NIR) spectra of blood plasma samples from mastitic and healthy cows have been used to evaluate the behavior of the PDV method in comparison with principal component analysis (PCA), discriminant partial least squares (DPLS), soft independent modeling of class analogies (SIMCA) and Fisher linear discriminant analysis (FLDA). Results obtained demonstrate that the PDV method exhibits improved stability in prediction without significant loss of separability. The NIR spectra of blood plasma samples from mastitic and healthy cows are clearly discriminated between by the PDV method. Moreover, the proposed method provides superior performance to PCA, DPLS, SIMCA and FLDA, indicating that PDV is a promising tool in discriminant analysis of spectra-characterized samples with only small compositional difference, thereby providing a useful means for spectroscopy-based clinic applications.
In linear discriminant analysis there are two important properties concerning the effectiveness of discriminant function modeling. The first is the separability of the discriminant function for different classes. The separability reaches its optimum by maximizing the ratio of between-class to within-class variance. The second is the stability of the discriminant function against noises present in the measurement variables. One can optimize the stability by exploring the discriminant variates in a principal variation subspace, i. e., the directions that account for a majority of the total variation of the data. An unstable discriminant function will exhibit inflated variance in the prediction of future unclassified objects, exposed to a significantly increased risk of erroneous prediction. Therefore, an ideal discriminant function should not only separate different classes with a minimum misclassification rate for the training set, but also possess a good stability such that the prediction variance for unclassified objects can be as small as possible. In other words, an optimal classifier should find a balance between the separability and the stability. This is of special significance for multivariate spectroscopy-based classification where multicollinearity always leads to discriminant directions located in low-spread subspaces. A new regularized discriminant analysis technique, the principal discriminant variate (PDV) method, has been developed for handling effectively multicollinear data commonly encountered in multivariate spectroscopy-based classification. The motivation behind this method is to seek a sequence of discriminant directions that not only optimize the separability between different classes, but also account for a maximized variation present in the data. Three different formulations for the PDV methods are suggested, and an effective computing procedure is proposed for a PDV method. Near-infrared (NIR) spectra of blood plasma samples from daily monitoring of two Japanese cows have been used to evaluate the behavior of the PDV method in comparison with principal component analysis (PCA), discriminant partial least squares (DPLS), soft independent modeling of class analogies (SIMCA) and Fisher linear discriminant analysis (FLDA). Results obtained demonstrate that the PDV method exhibits improved stability in prediction without significant loss of separability. The NIR spectra of blood plasma samples from two cows are clearly discriminated between by the PDV method. Moreover, the proposed method provides superior performance to PCA, DPLS, SIMCA md FLDA, indicating that PDV is a promising tool in discriminant analysis of spectra-characterized samples with only small compositional difference.
기존 Ordinary Regression (OR) 방법을 이용한 경향성 분석은 경향성을 과소평가하는 문제점을 나타낸다. 이러한 점에서 본 연구에서는 자료의 정규분포 가정과 평균을 중심으로 경향성 평가가 이루어지는 기존 Ordinary Regression (OR) 방법을 개선한 Quantile Regression (QR) 방법을 제안하였다. 본 연구에서는 64개 강우 관측지점의 연 최대 극대강수량 자료에 대하여 QR 방법과 OR 방법에 대하여 통계적 성능을 평가하였다. QR 방법의경향성 분석결과 47개 지점에서 5% 오차수준 내에서 t-검정을 통과한 반면 OR 방법에서는 13개 지점 만이 통계적 유의성을 가지는 것으로 나타났다. 이는 OR 방법이 자료의 평균을 중심으로 경향성을 평가하는 기법인데 반해 QR은 자료의 다양한 분위에서 경향성을 평가함으로써 극대 및 극소 부분에서의 경향성을 보다 유연하게 감지하는 이유로 판단된다. QR 방법을 통한 경향성 평가는 평균 중심의 해석문제점을 개선할 수 있으며 자료가 정규분포를 따르지 않거나 왜곡된 분포형태를 갖는 자료의 수문학적 경향성 평가에 유용하게 사용될 수 있을 것으로 판단된다.
데시메트릭 매핑은 행정구역 단위로 집계된 인구자료를 행정구역 내부의 공간적 변이에 따라 재집계하여 고해상도의 인구분포 자료를 작성하는 가장 보편적인 기법이다. 본 연구에서는 데시메트릭 매핑을 이용한 인구분포 추정의 장단점을 검토하고, 그 개선방안으로서 지리가중회귀모형을 이용한 다변량 데시메트릭 매핑 기법을 제안하였다. 기존의 지표피복 데이터와 인구센서스 자료를 기반으로 지리가중회귀모형을 적용하여 각 집계단위별로 지표피복 유형과 인구밀도의 상관관계를 분석하고, 모형에서 산출된 회귀계수를 이용해 하위 공간구획의 인구 총수를 산정하였다. 그 결과 지리가중회귀모형 기반 다변량 데시메트릭 매핑 기법을 이용했을 때, 면적가중 보간법, 이진 데시메트릭 매핑, 피크노필렉틱 보간법, 최소자승회귀모형 기반 데시메트릭 매핑 기법 등 다른 지능형 보간법에 비해 정확한 인구분포 추정이 가능하다는 것을 확인하였다. 이는 지리가중회귀모형을 통해서 인구센서스 집계 단위별로 상이한 구역 내 공간적 이질성이 인구분포 추정에 적절히 반영되었기 때문인 것으로 평가할 수 있다.
회귀모형의 기본가정은 추정된 계수들이 표본 내의 모든 관측값에 대해 일정하다는 것이다. 그러나 자료의 구조적 변화로 인해 모형의 추정계수 중 최소한 일부는 상이한 부분집합으로 전체 표본을 분할해야 하는 경우가 현실적으로는 흔히 존재한다. 본 연구에서는 두 회귀모형 계수들간의 동일성을 검정하는 방법을 확대${\cdot}$일반화하여 자료의 분할시점을 탐색하는 검정절차와 결합시킨 후 이를 최근 가장 큰 사회적 문제가 되고 있는 실업률의 구조변화 발생 여부와 시점을 판별하는 실증분석에 적용시켜 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.