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1. Introduction
  1) 

High precision population distribution data are 

extremely important in numerous decision making 

and real world problem solving efforts. Examples 

include those in business, healthcare, national 

security, and emergency response and preparedness 

applications(Dobson et al. 2003; Hay et al. 2005; 

Langford and Higgs 2006; Garb et al. 2007). 

Population estimation often boils down to the 

redistribution of spatially aggregated census 

count data to spatial units of finer resolution a – 

process of spatial interpolation. In other words, 

population interpolation refers to the process of 

transferring population data from one set of 

spatial units (source zones) to another (target 
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요약 데시메트릭 매핑은 행정구역 단위로 집계된 인구자료를 행정구역 내부의 공간적 변이에 따라 재집계하여 고해：

상도의 인구분포 자료를 작성하는 가장 보편적인 기법이다 본 연구에서는 데시메트릭 매핑을 이용한 인구분포 추정. 

의 장단점을 검토하고 그 개선방안으로서 지리가중회귀모형을 이용한 다변량 데시메트릭 매핑 기법을 제안하였다 기, . 

존의 지표피복 데이터와 인구센서스 자료를 기반으로 지리가중회귀모형을 적용하여 각 집계단위별로 지표피복 유형과 

인구밀도의 상관관계를 분석하고 모형에서 산출된 회귀계수를 이용해 하위 공간구획의 인구 총수를 산정하였다 그 , . 

결과 지리가중회귀모형 기반 다변량 데시메트릭 매핑 기법을 이용했을 때 면적가중 보간법 이진 데시메트릭 매핑, , , 

피크노필렉틱 보간법 최소자승회귀모형 기반 데시메트릭 매핑 기법 등 다른 지능형 보간법에 비해 정확한 인구분포 , 

추정이 가능하다는 것을 확인하였다 이는 지리가중회귀모형을 통해서 인구센서스 집계 단위별로 상이한 구역 내 공. 

간적 이질성이 인구분포 추정에 적절히 반영되었기 때문인 것으로 평가할 수 있다.

주요어 인구분포 추정 공간보간법 데시메트릭 매핑 공간적 이질성 지리가중회귀모형, , , , , NLCD：
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zones). The literature is replete with various 

population estimation methods using spatial 

interpolation. According to the type of information 

in use, we can classify population interpolation 

methods into two types, those based on spatial 

configuration only, and those that employ not 

only spatial configuration but also additional 

ancillary information such as spatial distribution 

of land use and land cover types(Wu et al. 2005). 

The first type uses no additional information 

besides the sets of spatial units and the population 

counts in the source zones. Examples include the 

areal weighting interpolation(Goodchild and Lam 

1980), pycnophylactic interpolation(Tobler 1979), 

and kernel-based interpolation(Martin 1989). 

The second type of population interpolation 

employs not only the above information, but also 

so-called ancillary information with the purpose 

to integrate internal variations of source zone. 

The second type of methods are also called 

‘intelligent’ interpolation methods by some 

researchers(Flowerdew and Green 1994). Dasymetric 

mapping method is the most typical, if not the 

only, example of those intelligent interpolation 

methods. It has been increasingly popular, 

especially due to the rapidly growing availability 

of geographic data and increasing popularity of 

geographic information system (GIS) and remote 

sensing (RS) technologies.   

Many studies have demonstrated that the 

dasymetric method can substantially improve 

population estimation accuracy(Mrozinski and 

Cromley 1999; Reibel and Agrawal 2007; Langford 

2006). In fact, some earlier comparative studies 

concluded that dasymetric mapping was the 

best performer among all popular population 

interpolation methods(Fisher and Langford 1995; 

Cockings et al. 1997; Mrozinski and Cromley 

1999). Despite the significant performance 

advantages of the dasymetric mapping, there has 

been little evidence to suggest widespread adoption 

amongst the broader GIS community(Langford 

2007). Langford(2007) stated that intelligent 

methods were not widely adopted because of 

two reasons. First, implementation of intelligent 

interpolation is much more complicated than 

simple areal weighting interpolation which can 

be implemented by a suitable overlay tool 

which is readily available in most GIS software. 

Furthermore, most intelligent interpolation methods 

require additional process to prepare ancillary 

information. For instance, many researchers had 

to perform land use land cover classification 

with satellite images to obtain ancillary data for 

intelligent interpolation of population(Langford 

and Unwin 1994; Yuan et al. 1997; Holt et al. 

2004; Reibel and Agrawal 2007; Sleeter 2004). 

Areal weighting interpolation does not require 

the user to be involved with the preparation of 

ancillary data. Moreover, these additional processes 

may also introduce more errors into the original 

dataset because the accuracy of those ancillary 

data is not assured and errors are inherent in 

almost all aspects of GIS analysis. Therefore, 

there is no wonder that many users still prefer 

the traditional simple interpolation method 

despite the superior performance by the 

intelligent interpolation methods reported in many 

studies. To encourage the geography community 

to employ intelligent interpolation methods, efforts 

should be made to overcome the problems of 

excessive processing time and implementation 

difficulty. Regarding the acquisition of high 

accuracy ancillary information, there are several 

high quality public-domain datasets available in 

the United States such as the National Land 

Cover Dataset(NLCD). The NLCD data are free, 

seamless, and intended to be updated regularly, 

which is vital for timely estimation. Making use 

of the readily available ancillary data not only 

guarantees the currency of data, but also helps 

to minimize the data processing time.

Another problem with the dasymetric mapping 

and other ‘intelligent’ population interpolation 
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methods is that they ignore spatial heterogeneity 

(or non-stationarity) in the relationship between 

population distribution and the distribution of 

explanatory variables(e.g., land use land cover 

classes). Although the current methods account 

for the spatial heterogeneity of population density 

within each source zone by incorporating, for 

instance, land use land cover ancillary information, 

it assumes that the relationship between the 

population density and any specific land use 

land cover type is spatially stationary. Such 

relationship, in reality, varies across space. For 

instance, it is likely that a range of residential 

densities are present within most census reporting 

zones even though the corresponding land use 

land cover types are the same(Langford 2006). 

The difference in residential densities arises 

primarily due to different housing types in the 

urban areas. That is, the population density of a 

residential area in the city center is highly 

probable to be different from that of a suburban 

town. This problem has been realized by many 

researchers who make use of the ordinary least 

squares (OLS) regression model in population 

estimation. Some attempts have been made to 

deal with this problem by adopting regional 

regression approaches, in which the whole study 

area is subdivided into smaller regions and an 

OLS regression model is applied to each region 

to estimate the population. Such an approach 

seems to produce better results for each region 

(Langford 2006; Yuan et al. 1997). Albeit a good 

try, such a solution has obvious flaws. First, it is 

difficult to know how large or small a region 

should be. Therefore there is no guarantee of 

sufficient account of spatial heterogeneity in a 

study. Secondly, repeating the same process over 

multiple regions in one study is tedious and 

deficient.

This research responds to both of the above 

discussed problems of intelligent interpolation 

method by introducing the geographically 

weighted regression(GWR). The GWR method 

has been designed specifically to take care of the 

spatial heterogeneity problem(Fotheringham et al. 

2002). We present a GWR-based intelligent 

interpolation method with a two-fold objective. 

On one hand, the method is anticipated to 

effectively account for the spatial heterogeneity 

of relationships between population density and 

ancillary information. On the other hand, the 

method is designed in order to allow users to 

directly make use of readily available multi-class 

land use land cover data. The remainder of the 

article is organized as follows. The next section 

examines the existing theoretical framework 

relating to population interpolation methods and 

to the issue of spatial heterogeneity. Section 3 

presents the GWR-based intelligent interpolation 

method with a case study. The article concludes 

in Section 4 with a summary of findings and 

discussions of future work.

2. Areal Interpolation Methods for 

Population Estimation

Cross-area estimation or areal interpolation is 

primarily designed for transferring data between 

two sets of non-nesting spatial units (Goodchild 

and Lam 1980). The two spatially incompatible 

zoning units are usually termed source zone and 

target zone.

1) Areal weighting interpolation

The simplest areal interpolation technique is 

areal weighting interpolation. The methodology is 

based only on the geometric intersection of the 

source and target zones. It assumes homogeneity 

within source zones and therefore no further 

ancillary information is required to guide the 

interpolation process. Population of each target 

zone is estimated by the following equation 

(Fisher and Langford 1995):
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where, S is the number of source zones;  is 

the area of overlap between target zone t and 

source zone s;  is the population of source zone 

s; and  is the area of source zone s. The 

problem with this method is the unfounded 

assumption of uniform spatial distribution of 

population density within each source zone. 

Numerous studies have shown the overall low 

accuracy of simple area weighting in comparison 

to other techniques, e.g., intelligent interpolation 

(see for example, Langford 2006; Gregory 2002; 

Reibel and Agrawal 2007; Mrozinski and Cromley 

1999; Sadahiro 2000)

2) Pycnophylactic interpolation

Pycnophylactic interpolation denies the assum- 

ption of homogeneity of population density within 

source zones. Tobler (1979) proposed this method 

for the preparation of a smoothed map (or 

isopleth map) from data in discrete areal spatial 

unit system, assuming the existence of a smooth 

density function which is non-negative and has 

a finite value for every location. The virtue of 

this interpolation method is to redistribute source 

zone values by distance-decay density function 

while ensuring original value in the source zone 

intact the so called pycnophylactic or volume -–  

preserving property. This property can be defined 

in equation(2), according to Lam(1983). 
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Where,  is the original population of zone , 

 is the area of zone ,  is the density in 

cell , and  is the area of each cell.  
  is set 

to 1 if  is in zone ; otherwise set it at 0. 

The interpolation procedure begins by assigning 

the mean density to each grid cell superimposed 

on the source zones, and then modifies the 

assigned values by slight amounts to bring the 

density closer to the value required by the 

governing partial differential equation(Tobler, 1979).

òò =
iR

iHdxdyyxZ ),(
(3)

Where,  denotes the  region and  is the 

total population count in region . The volume- 

preserving condition is then enforced by either 

incrementing or decrementing all the density 

values within individual zone at the end of each 

iteration. 

3) Dasymetric mapping method

Dasymetric mapping (DM) methods are typical 

intelligent interpolation methods as they require 

and make use of ancillary information to infer 

internal structure of population distribution within 

source zones. Dasymetric mapping, first developed as 

a form of cartographic representation(McCleary 

1984), is defined as a method by which source 

zones are subdivided into cellular units that possess 

greater internal consistency in the densities of the 

variable being mapped. Often land use and land 

cover types are used as ancillary information, 

although other information such as building and 

street has also been used. According the classification 

scheme in the ancillary information, we can 

classify DM methods into binary DM and 

multi-class DM. The simplest is binary DM in 

which a binary land use (or other ancillary data) 

classification is used to control the population 

allocation. A cellular unit is classified either as 

residential (populated) or non-residential (non- 

populated) type so that population can be 

re-distributed to those residential units only(Fisher 
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and Langford 1995; Fisher and Langford 1996). 

The method is different from the areal weighting 

interpolation as it only considers the populated 

areas in the target zones for allocating population. 

It is conceptually simple and practically outperforms 

other non-intelligent methods(Eicher and Brewer 

2001; Martin et al. 2000; Langford 2006, Langford 

2007). However, there are two major limitations 

of the binary DM. First, it is unable to address 

more complex relationships between land uses 

and a variety of population concentration. In 

reality, a range of population densities are present 

within most census reporting zones by different 

land uses, particularly in urban areas(Langford 

2006). Secondly, because such binary classification 

of residential versus non-residential land use 

classes is rarely available directly, this method 

often requires researchers and practitioners to 

invest considerable time in preparing such ancillary 

data. 

The Multi-class DM is an incremental deve- 

lopment from the binary DM (e.g. see Langford 

2006 for a summary). The most important issue 

of the multi-class DM is how to calibrate density 

parameters for different land cover classes. Unlike 

that in the binary DM where population density 

in ‘non-populated’ cellular units is fixed to zero 

and that in the ‘populated’ area is calibrated by 

a simple algebra as used by the areal weighting 

interpolation, the determination of densities 

for multiple classes in the multi-class DM is 

complicated. There are several ways reported in 

the literature to determine the population density 

for each class. These methods have been categorized 

into the following three groups (Langford 2006); 

Proportion preset, Selective sampling, and Statistical 

modeling.

Proportion preset assigns a subjectively pre- 

defined proportion of the total population to 

each class(Eicher and Brewer 2001). Thus the 

density can be determined accordingly. Selective 

sampling determines population density parameters 

by a selective sampling strategy. For example, 

the density for a class can be easily calculated 

by selecting a number of source zones filled by 

that single land cover class only(Mennis 2003), 

assuming enough samples can be found. But 

often it is difficult or simply not possible to find 

enough number of source zones filled by a single 

land cover class. In response, some other modified 

methods, such centroid sampling, containment 

sampling, and percent cover sampling, have been 

proposed to loosen the sampling requirement 

(Mennis and Hultgren 2006). Statistical modeling 

is a more generalized solution (Langford et al. 

1991; Yuan et al. 1997; Langford 2006) using 

statistical modeling. It aims to establish a 

multivariate regression model to estimate the 

population in a zone to surrogate variables of 

multiple land use/land cover classes. The surrogate 

variable for each class is usually the number of 

cellular units of that class in the zone. In this 

case, the regression coefficient of this variable is 

the density of the corresponding class. 

4) The spatial heterogeneity problem and 
intelligent population estimation

All of the previous solutions of multi-class 

dasymetric mapping share a common limitation – 

the lack of consideration of heterogeneity in the 

relationship between the ancillary information 

and population density. Heterogeneity refers to 

the fact that, unlike physical laws, measurement 

of social processes tends to vary according to 

where it is made(Fotheringham 2002). In the case 

of spatial processes, it is referred to as spatial 

heterogeneity, or in other words, the relationship 

measurements tend to vary over space. Research 

by Langford (2006) revealed the presence of 

spatial heterogeneity in the relationship between 

population and land cover, which the global 

regression models cannot handle. For population 

estimation, the OLS regression model assumes 
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that there exists a spatially stationary relationship 

between population and land cover as there is 

only one set of coefficients applying to all areas. 

However, this assumption is not problematic for 

the above discussed intelligent population estimation, 

particularly when the ancillary information is the 

classified land cover raster data which is widely 

available. In remote sensing classification, an 

important distinction is made between land use 

and land cover. Satellite images can reveal land 

cover such as man-made structures, water, bare 

soil, trees, and so on, through the unique spectral 

characteristics of each type. Thus land cover 

data is relatively easy to be classified and such 

classification is a standard function in most 

remote sensing software. Land uses, however, 

have to be interpreted based on the land cover 

information and many additional information 

such as shape, size, etc. Such interpretation requires 

specific expert skills and consequently involves 

certain level of subjectivity. In fact, different land 

uses could be conjectured from a single land 

cover dataset depending on the procedure that 

was used and who did the interpretation. This is 

the probably the major reason why land cover 

data are much more widely available than land 

use data. When we use this type of ancillary 

information for intelligent population estimation, 

the multi-class land cover data only show, for 

instance, if a piece of land is developed and 

how much it is developed (open, low, medium, 

and high intensity) but not directly the information 

about what land uses might be associated. 

For example, high intensity developed pixels 

might be apartment complexes, row houses, and 

commercial/industrial without saying what exactly 

it is. It is highly probable that pixels with the 

same land cover class might have different land 

uses depending on where the pixel is located. 

Hence, a density parameter for each land cover 

class might vary spatially. Furthermore, the land 

use land cover extracted from the satellite images 

cannot be 100% accurate and spatial variability 

of classification errors occurs(Lo 2008). All these 

give rise to spatial heterogeneity, which the OLS 

model cannot address. The accuracy of a 

population land use model for population estimation–  

does not depend totally on the independent variables 

used or any other ancillary data included. It 

appears that a local rather than a global 

approach is needed to deal with the spatial 

heterogeneity of the input data in the model.

Such a problem has been realized by many 

researchers who make use of the OLS regression 

model in population estimation. Some attempts 

have been made to deal with this problem by 

adopting a regional regression approach, in which 

the whole study area is subdivided into smaller 

regions, and an OLS regression model is applied 

to each region to estimate the population. Such 

an approach is reported to produce better results 

for each region(Yuan et al. 1997; Huang and 

Leung 2002; Langford 2006). However, it is 

difficult to know how large a region should be. 

Some previous studies use county as the unit of 

region(e.g. Yuan et al. 1997). The model still 

suffers from the same problem of spatial hetero- 

geneity as a county is large enough to contain 

spatial variations in itself. 

Recently, there is an increased interest in the 

use of local geographically weighted regression 

(GWR) in human geography, which has been 

designed specifically to take care of the spatial 

heterogeneity problem(Fotheringham et al. 2002; 

Huang and Leung 2002). GWR extends an 

ordinary least squares regression model by 

allowing local variations of coefficients(and thus 

relationships), as shown in Equation (4) (Lo 

2008):

i

n

k
ikikii exaaY ++= å

=1
0    i=1,2, ,n…… (4)

where,  and  are the dependent and 
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independent variables at point ; =1, 2,...n,  

and  are parameters to be estimated;  is 

the value of the th parameter at location ; 

and  are independent normally distributed error 

terms with zero mean and constant variance at 

point . 

Unlike the OLS regression model which assumes 

global parameters across the whole study area, 

the GWR accounts for spatial variations by 

estimating local rather than global parameters for 

each individual observation. The GWR local 

coefficients can be estimated through a weighted 

least square procedure (see model calibration for 

estimation details).

3. GWR-based intelligent interpolation 

method for population estimation

This article presents a GWR-based intelligent 

population estimate method. By taking advantage 

of the recent developments in dealing with the 

spatial heterogeneity problem and the increasingly 

availability of high quality national land cover 

data, the study aims to improve both the estimation 

accuracy and ease-of-use of the intelligent 

population methods. We will explain the method 

and evaluate its performance with a case study.

1) Data and study area

The Atlanta Metropolitan Statistical Area (MSA) 

is a rapidly changing area. The various types and 

stages of developments give rise to the spatial 

heterogeneity of spatial processes and relationships 

pertinent to population density. For the past 

decades, the region has been one of the fastest 

growing metropolises in the U.S. with a population 

increase of 39 percent during the period of 1990

2000(http://www.censusscope.org). <Figure 1> –

shows the 28-county Atlanta MSA. The region 

has expanded greatly as suburbanization consumes 

large areas of forest and open land adjacent to 
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Clayton
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Figure 1. Study area: Atlanta MSA, Georgia, USA.

(left: county boundaries, right: National Land Cover Dataset 2011)
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the center city (city of Atlanta), pushing the peri- 

urban fringe farther away from the original urban 

boundary. Because of the significant physical 

growth, Atlanta’s urban spatial structure has 

changed dramatically(Yang and Lo 2002). 

For population estimation, we use the 2010 

census data for aggregated population counts 

and the NLCD 2011 for land cover ancillary 

information. Population counts at the census 

tract level for the 28-county Atlanta MSA were 

obtained from the U.S. Census Bureau. This 

dataset includes a total of 690 census tracts. At 

a finer level spatial granularity, census data in a 

total of 1,923 census block groups were also 

acquired for the purpose of accuracy evaluation.

A raster land cover dataset of the study area 

is extracted from the National Land Cover Dataset 

(NLCD) 2011, as displayed in the right-side 

map of <Figure 1>. The dataset is downloaded 

from the Multi-Resolution Land Characteristics 

Consortium (MRLC; http://www.mrlc.gov/). The 

NLCD 2011 dataset, derived from Landsat satellite 

images with a spatial resolution of 30m, provides 

pre-classified land cover information.

The NLCD program has many advantages for 

dasymetric mapping of population distribution. 

Given that the difficulty of land cover classification 

is one of the main reasons why the dasymetric 

mapping method is not being widely accepted 

for population distribution mapping in spite of 

its better performance over simple areal weighting 

interpolation as briefly discussed above, a freely 

available land cover dataset like NLCD provides 

a good alternative to obtain land cover dataset 

for dasymetric mapping. Since the first distribution 

of NLCD in 1992, it was updated in 2001, 2006, 

2011 respectively. It has been undertaken by 

MRLC since 2006 as a national land cover 

monitoring program. Regular update of the national 

land cover maps provides an opportunity for 

accurate population distribution mapping in timely 

manner.

The overall database philosophy and classifi- 

cation methodology were presented by Homer et al 

(2004; 2015). Particularly relevant to population 

estimation are the developed lands. The NLCD 

2011 differentiates four types of developed land 

cover classes(i.e. high intensity, medium intensity, 

low intensity, and open space) according to the 

fraction of impervious surface, as summarized in 

<Table 1>(Homer et al. 2015).

Code Class name Description

21
Developed, 

Open Space

Includes areas with a mixture of some constructed materials, but mostly vegetation 

in the form of lawn grasses. Impervious surfaces account for less than 20 percent 

of total cover. These areas most commonly include large-lot single-family housing 

units, parks, golf courses, and vegetation planted in developed settings for 

recreation, erosion control, or aesthetic purposes

22
Developed,

Low Intensity

Includes areas with a mixture of constructed materials and vegetation. Impervious 

surfaces account for 20 49 percent of total cover. These areas most commonly –

include single-family housing units.

23

Developed, 

Medium 

Intensity

Includes areas with a mixture of constructed materials and vegetation. Impervious 

surfaces account for 50 79 percent of the total cover. These areas most commonly –

include single-family housing units.

24
Developed, 

High Intensity

Includes highly developed areas where people reside or work in high numbers. 

Examples include apartment complexes, row houses, and commercial/industrial. 

Impervious surfaces account for 80 to 100 percent of the total cover

Table 1. NLCD 2011 classification scheme for developed land cover classes
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2) Methodology

The proposed GWR-based multi-class dasymetric 

mapping method consists of a series of steps, 

most of which can be performed in a GIS 

software such as ESRI’s ArcGIS 10.1. The first 

task is to identify areas of populated land cover 

classes by source zones. It is to compute the 

proportion of grid cells in a source zone for 

each land cover class that might reasonably be 

expected to be inhabited. The four ‘developed’ 

land cover classes of the NLCD 2011 classification 

scheme are assumed to be inhabited and other 

land cover classes are excluded in further steps 

as no population counts need to be assigned 

to them. In the next step, the source zones’ 

population counts are then regressed on the 

calculated areas of the four populated (developed) 

land cover classes using the GWR model as 

expressed in Equation (4). The estimated model 

is then applied to each grid cell of the NLCD 

data layer so that a smoothed population density 

surface map can be generated. To evaluate the 

estimation accuracy, aggregated population counts 

at the block group level, which is finer than the 

census tract level, will be re-constructed from 

the population density surface map. The accuracy 

of the estimated block group level population 

counts can be calculated using the census data 

at the same level as the ground-truth data.

To assess the performance of the GWR-based 

method, we conducted population estimation with 

the same set of data using several other popular 

methods including areal weighting interpolation, 

binary dasymetric mapping, and traditional multi- 

class dasymetric methods using the OLS-based 

regression. Their performances are examined and 

compared. 

3) Model calibration

Although all four types of models are calibrated 

for the study area, we will explain calibration 

details for only the proposed methods because 

four other popular methods follow the same 

procedures as in the literature review. The GWR 

model provides locally varying parameter estimates 

for regression models where spatially varying 

relationships are hypothesized. We use the GWR 

3.0 software which produces unique parameter 

estimates for all observations by spatially weighting 

the observations (i.e. census tract) according to 

their proximity to each other. Observations closer 

to each other are given more weight than are 

observations further away. The weights are derived 

through a distance-decay function to assign 

weights to data according to their proximity so 

that near locations have more influence than 

further locations. To limit the number of data 

points considered for each local parameter estimate, 

a spatial kernel is used at each observation. The 

kernel can be either fixed, in which case the 

bandwidth of the kernel is also fixed, and thus 

varying numbers of observations are weighted 

for the computation of each local parameter. 

Because the census tracts in the Atlanta metro 

area have different sizes and are irregularly 

distributed, an adaptive kernel is more appropriate. 

With an adaptive kernel, an equal number of 

data observations are weighted and used for 

local parameter estimation. In addition to local 

parameter estimates, the GWR program also 

provides local goodness-of-fit measures and 

local residuals. For this analysis, a geographically 

weighted Gaussian regression is applied to the 

whole study area at the census tract level using 

an adaptive kernel. The dependent variable is 

population count, and the four developed land 

cover classes are used as independent variables 

<Table 2> shows a sample of input data, estimated 

parameters, local R
2, and residual of census 

tracts for the four-class GWR model.

The goodness-of-fit of the GWR model can 

be assessed by examining several goodness-of-fit 
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measures of the model and those of the 

counterpart OLS model. <Table 3> shows such a 

comparison. Here the corresponding OLS model 

means it has the same dependent and independent 

variables as those of the GWR model. Both the 

Akaike Information Criterion (AIC) and the R2 

measures indicate that the GWR model has clearly 

better goodness-of-fit than the OLS model does. 

This suggests that explanation power of the 

regression modeling of population estimation can 

be greatly enhanced by accounting for local 

variations. 

For high intensity developed land cover, the 

peripheral counties and parts of city center area 

exhibit the stronger positive relationship between 

high intensity developed land cover and population 

while most of the north-south belt of central 

counties shows a negative relationship(Fig. 2; 

upper left map). 

On the other hand, the local parameter 

estimates for the medium intensity developed 

land cover variable show high values (stronger 

relationship) in the core and rapidly growing 

suburban counties(Gwinnett, Forsyth, and Barrow), 

gradually trending down to low values (weaker 

relationship) in the periphery(Fig. 2; upper right 

map). This displays a stronger core-periphery 

influence for Dev_med than that for the Dev_ 

high. As for the local parameter estimates for 

the low intensity developed land cover variable, 

which remain positive almost throughout(Fig. 2; 

lower left map), the spatial distribution of the 

parameter estimates shows an inverse pattern 

from that of Dev_med. High population density 

areas such as the city core and major suburban 

residential area show weaker relationship between 

the area of Dev_low and population count while 

peripheral areas show stronger relationship. Finally, 

the local parameter estimates for the open-space 

developed land cover class interestingly show 

that a small ring of positive values (i.e., stronger 

relationship) in the city center(Fig. 2; lower right 

map). The most peripheral counties show negative 

values or weaker positive values, indicating weak 

Goodness-of-fit measures Adjusted R2 AIC

GWR model 0.787 12,227

OLS model 0.657 12,436

 Note : Higher adjusted R
2
 and lower AIC values indicate better goodness-of-fit

Table 3. Comparing the goodness-of-fit of the GWR and corresponding OLS models

Obs. Cond.
Local

R2 Pred. Interc.
C1

DevOpen

C2

DevLow

C3

DevMed

C4

DevHigh
Residual

 5118 10.42 0.71 6130.20 1742.20 0.25 0.89 0.83 -1.02 -1012.20 

 5517  9.91 0.74 5938.06 1890.12 0.26 1.11 -1.24 -0.44 -421.06 

 6008  9.83 0.74 5892.76 2082.89 0.25 1.08 -0.90 -0.83 115.24 

 8498  9.49 0.76 7563.24 2728.00 0.24 0.94 0.87 -2.43 934.76 

10595  9.39 0.86 9718.03 2878.50 0.27 1.09 -0.48 -1.47 876.97 

 5212 10.01 0.75 5697.75 1840.76 0.28 1.18 -1.68 0.03 -485.75 

 4970 11.70 0.70 5822.27 1971.20 0.19 0.67 3.07 -1.95 -852.27 

 3649 10.44 0.75 4230.95 1931.79 -0.14 1.70 -1.99 1.26 -581.95 

Table 2. Parameter estimation using the Four-class GWR model (sampled)
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relationship between Dev_open and population. 

The spatial pattern reveals a trend of values 

from low in the west to high in the east.

Taking the four-class model as a whole, the 

map of pseudo local   values shows the strongest 

relationship between population and land cover 

in some clusters south of the central city and most 

of peripheral areas. The weakest relationship is 

found in high density urban areas of Fulton, 

Cobb, DeKalb, and Clayton County around the 

central city (less than 0.5) (Fig. 3). This suggests 

that each of these parts has more complicated 

residential density pattern, which is difficult to 

be modeled by only land cover areas.

Overall, the results of GWR model and the 

spatial pattern of parameter estimates for each 

land cover class show that spatial heterogeneity 

problem is evident in the relationship between 

land cover classes and population counts.

4) Implementation and performance evaluation

Once the GWR and other popular population 

estimation models are calibrated, each model is 

Figure 2. Distribution of regression coefficient values for the four ‘developed’ land cover classes.

Dev_high (upper left), Dev_med (upper right), Dev_low (lower left), and Dev_open (lower right)
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applied to the NLCD data layer to generate 

population density surface map. For the GWR- 

based model, it is important to recall, however, 

because the model does not accounts for all the 

variation in the source zone population, the 

density weights need to be locally scaled by the 

ratio of their respective source zone’s observed 

population to its fitted population to account for 

the proportion of source zone population not 

predicted in the model, thus preserving the 

pycnophylactic property (Flowerdew and Green 

1989; Flowerdew and Green 1992; Yuan et al. 

1997). For OLS regression model, where intercept 

and negative coefficient are excluded assuming 

no population for no residential area, the grid 

cells forming the raw estimated population surface 

were multiplied by the ratio of their respective 

source tracts’ observed populations to the source 

tract’s fitted population computed by summing 

the raw estimates across the source tract’s grid 

cells.

On the contrary, the GWR model does not 

exclude intercept term and negative parameter 

estimates provided that land cover class does not 

directly associated with residential land use. 

Hence, we assume that a certain land cover may 

have a negative effect on population density and 

intercept term could be a part of variance not 

explained by the four land cover class variables. 

Assuming that the intercept term and error term 

in the GWR model refer to the variance that is 

not explained by the four developed land cover 

classes, those values are evenly redistributed to all 

developed pixels in each source zone. The result 

is the scaled population density surface map as 

shown in <Figure 4>. It is however noteworthy 

that the use of regression-based weights and 

pycnophylactic scaling is a practical solution that 

is not statistically valid.

In order to evaluate the performance of the 

proposed GWR-based population estimation model, 

several other popular independently implemented 

with the same data. <Table 4> lists the accuracy 

of estimated population at the block group level 

of each method, with the census block group 

population as ground-truth data. These Overall 

accuracy is assessed using mean absolute error 

(Goodchild et al. 1993) and root mean squared 

error (Eicher and Brewer 2001). 

Several findings are revealed in <Table 4>. First 

Figure 3. Local R2 values

Figure 4. Population density surface from GWR 

based multi-class dasymetric method
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of all, there is a clear distinction between the 

performance of intelligent interpolation methods 

and that of the simple interpolation methods. 

The intelligent interpolation methods deliver 

much higher accuracy. The overall accuracy of 

binary dasymetric method is better than that of 

the multi-class dasymetric method based on the 

global regression model. This result is consistent 

with the previous finding of Fisher and Langford 

(1995). It suggests that, using a global regression 

model, benefits of additional information from 

multiple land cover classes rather than the binary 

land cover classes cannot be realized. It might 

be because of the ambiguity in the relationship 

between land cover and land use as discussed 

above. Finally and most importantly, the GWR- 

based intelligent interpolation outperforms all 

other methods. This method allows the spatial 

heterogeneity of land cover population density – 

correlation to be accounted for. GWR based 

dasymetric mapping allows any land cover class 

to have a negative density parameter as well as 

a positive parameter. Therefore, each land cover 

class may have varying density parameters area 

by area as shown in <Figure 2>, and <Table 2>. 

Those figures show that a certain land cover class 

may have a negative effect on the population 

density in some regions, while positively correlated 

with population density in most areas, and vice 

versa. For instance, high intensity developed land 

cover has positive density parameters in the 

eastern and western parts rural area while most 

of study area have negative parameters. On the 

other hand, medium intensity developed land 

cover shows negative parameters for those rural 

areas while positive parameters are prevalent in 

most areas. 

4. Discussion and conclusion

This article examined the benefits of the 

geographical weighted regression (GWR) for 

dasymetric density parameter estimation in the 

context of population distribution modeling. For 

ancillary dataset used in the dasymetric method, 

we used the pre-classified NLCD 2011 land 

cover dataset that does not require digital image 

processing and classification. The performance of 

the GWR based multi-class dasymetric mapping 

method was examined by a comparative accuracy 

assessment with four other areal interpolation 

methods for population distribution modeling. All 

intelligent interpolation methods outperformed 

the areal weighting interpolation and the pycno- 

phylactic interpolation, both of which do not 

utilized ancillary information. OLS based multi- 

class dasymetric method did not show better 

performance than the binary dasymetric method. 

GWR based multi-class dasymetric method was 

found to provide the most accurate result. The 

degree to which this technique was found to be 

superior is attributed to the fact that spatial 

Method Mean absolute error (%) RMS error

Simple interpolation
Areal weighting 37.21 941

Pycnophylactic 35.14 916

Intelligent

interpolation

Binary dasymetric 26.58 769

Multi-class dasymetric

OLS regression 27.22 771

GWR 21.12 693

 Note: total target zones N=1923, mean population of target zones = 6,156

Table 4. Performance summary
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heterogeneity was accounted for in the process 

of determining density parameters for land cover 

classes.

Overall, this research showed that the perfor- 

mance of dasymetric mapping method can be 

improved by integrating the geographically 

weighted regression model to determine weight 

parameters of land cover classes on population 

density, which is a crucial part of the estimation 

process. It is also noteworthy that the proposed 

method performed well with the NLCD 2011, a 

publically available high quality national land 

cover dataset. We anticipate these data and 

methods would fulfill the need for accurate 

population distribution data without the effort to 

classify remotely sensed images.
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