• Title/Summary/Keyword: The Components for Assessment

Search Result 1,157, Processing Time 0.034 seconds

Sound Quality Evaluation of Vehicle Interior Noise Using Virtual Sound Quality Analysis (가상 음질 분석을 이용한 자동차 실내소음 음질 평가)

  • Kang, Sang-wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.100-106
    • /
    • 2017
  • Sound quality engineering in automobile noise applications has become more and more important under the current quiet driving condition because various noise components masked under high noise level can be audible in quieter driving situation. Many researches have been carried out for subjective and objective assessments on automobile sounds and noises. In particular, the interior sound quality has been one of research fields that can give high-quality feature to automobile products. Although many works related to the interior sound quality have been progressed or completed in foreign countries, limited research results are presented in the country. In the study, subjective assessments are first performed with 20 subjects to select perceptual adjectives suitable to the assessment of car interior noises during acceleration. The selected perceptual adjectives are employed as the assessment scales to evaluate the acceleration noises in questionnaire procedures using 35 subjects, for which several noises are created through digital filtering of the acceleration noises measured. Mean values and standard deviations for subjective assessment scores obtained by the questionnaire procedures are calculated and their reliability are also verified. Finally, various statistical analyses such as the correlation analysis and the factor analysis are carried out to reveal the interrelationship between the assessment scales and the spectrum components of the acceleration noises.

Prognostics for integrity of steam generator tubes using the general path model

  • Kim, Hyeonmin;Kim, Jung Taek;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.88-96
    • /
    • 2018
  • Concerns over reliability assessments of the main components in nuclear power plants (NPPs) related to aging and continuous operation have increased. The conventional reliability assessment for main components uses experimental correlations under general conditions. Most NPPs have been operating in Korea for a long time, and it is predictable that NPPs operating for the same number of years would show varying extent of aging and degradation. The conventional reliability assessment does not adequately reflect the characteristics of an individual plant. Therefore, the reliability of individual components and an individual plant was estimated according to operating data and conditions. It is essential to reflect aging as a characteristic of individual NPPs, and this is performed through prognostics. To handle this difficulty, in this paper, the general path model/Bayes, a data-based prognostic method, was used to update the reliability estimated from the generic database. As a case study, the authors consider the aging for steam generator tubes in NPPs and demonstrate the suggested methodology with data obtained from the probabilistic algorithm for the steam generator tube assessment program.

Reliability-based approach for fragility assessment of bridges under floods

  • Raj Kamal Arora;Swagata Banerjee
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.311-322
    • /
    • 2023
  • Riverine flood is one of the critical natural threats to river-crossing bridges. As floods are the most-occurred natural hazard worldwide, survival probability of bridges due to floods must be assessed in a speedy but precise manner. In this regard, the paper presents a reliability-based approach for a rapid assessment of failure probability of vulnerable bridge components under floods. This robust method is generic in nature and can be applied to both concrete and steel girder bridges. The developed methodology essentially utilizes limit state performance functions, expressed in terms of capacity and flood demand, for probable failure modes of various vulnerable components of bridges. Advanced First Order Reliability Method (AFORM), Monte Carlo Simulation (MCS), and Latin Hypercube Simulation (LHS) techniques are applied for the purpose of reliability assessment and developing flood fragility curves of bridges in which flow velocity and water height are taken as flood intensity measures. Upon validating the proposed method, it is applied to a case study bridge that experiences the flood scenario of a river in Gujarat, India. Research outcome portrays how effectively and efficiently the proposed reliability-based method can be applied for a quick assessment of flood vulnerability of bridges in any flood-prone region of interest.

Investigation of the Components for Assessing the Ability of Engineering Design (공학설계능력의 평가 요소 구명)

  • Kim Tae-Hoon;Lee So-Yee;Rho Tae-Cheon
    • Journal of Engineering Education Research
    • /
    • v.8 no.3
    • /
    • pp.49-56
    • /
    • 2005
  • The purposes of this study are to select assessment components for the engineering design ability and to verify the validity of the selected assessment components. From the results of the study, the following conclusions were made. $\cdot$ Social Ability : 'Communication' and 'Teamwork' $\cdot$ Procedure Ability : 'Acknowledging and Defining Problems', 'Planning and Maintaining', 'Collecting Information', 'Deriving Ideas' and 'Evaluating Ideas' $\cdot$ Experience : 'Engineering Experience' and 'Science Experience' $\cdot$ Knowledge : 'Engineering Knowledge', 'Science Knowledge' and 'Mathematics Knowledge', 'Visualization Ability': 'Sketching' and 'Drawing' $\cdot$ Reasoning : 'Converging Reasoning' 'Inductive Reasoning' and 'Intuitive Reasoning'

Software Development for System Virtual Accelerated Life Testing (시스템의 가상 가속수명시험을 위한 소프트웨어 개발)

  • Kang, Bo-Sik;Chang, Mu-Seong
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.187-199
    • /
    • 2012
  • In general, accelerated life testing is performed to reduce testing time. But it is difficult to apply accelerated life testing to a system besides components. This paper developed a software which estimates reliability measures of the system from results of accelerated life testing of components building the system. This software can handle the system with a large number of components and complex topology. Multiple failure modes of a component were also considered in this software. Based on the software, reliability measures of a gearbox example at several conditions were estimated from the accelerated life testing results of three components of the gearbox.

A Study on the Application of Operational Experience in the Stage of Aircraft System Design and Safety Assessment (항공기 시스템 설계와 안전성평가에 운영경험 반영 사례 연구)

  • Koo, Min-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.2
    • /
    • pp.34-39
    • /
    • 2014
  • Airworthiness authorities specify the technical standards of airworthiness that propose minimum requirement of the commercial transport category and apply the rules in the certification process to ensure the safety of the aircraft. The Federal Aviation Administration and other national airworthiness authorities define the fatal accident risk levels for the safety assessment of the aircraft system and establish standard procedures to apply both qualitative and quantitative analysis techniques. However, an accident or incident may occur by the combination of various factors, although the aircraft is designed in accordance with the strict standards and approval by the Airworthiness Authorities. There are some key factors, such as human error, unpredictable complex system failures, degradation of the components reliability, improper maintenance task and intervals. Risk can be reduced by reflecting aircraft operational experience with similar types of aircraft in the process of aircraft development and safety assessment. Result of the root cause analysis for the Airbus A300-600 incident in which the aircraft engine reverser was deployed in the air have been introduced to reflect the design of system and related components. Also, this paper suggests to create a big-database in order to provide a feed-back to the FAR Part 25 transport category design and safety assessment of the operational experience.

Component fragility assessment of a long, curved multi-frame bridge: Uniform excitation versus spatially correlated ground motions

  • Jeon, Jong-Su;Shafieezadeh, Abdollah;DesRoches, Reginald
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.633-644
    • /
    • 2018
  • This paper presents the results of an assessment of the seismic fragility of a long, curved multi-frame bridge under multi-support earthquake excitations. To achieve this aim, the numerical model of columns retrofitted with elliptical steel jackets was developed and validated using existing experimental results. A detailed nonlinear numerical model of the bridge that can capture the inelastic response of various components was then created. Using nonlinear time-history analyses for a set of stochastically generated spatially variable ground motions, component demands were derived and then convolved with new capacity-based limit state models to obtain seismic fragility curves. The comparison of failure probabilities obtained from uniform and multi-support excitation analyses revealed that the consideration of spatial variability significantly reduced the median value of fragility curves for most components except for the abutments. This observation indicates that the assumption of uniform motions may considerably underestimate seismic demands. Moreover, the spatial correlation of ground motions resulted in reduced dispersion of demand models that consequently decreased the dispersion of fragility curves for all components. Therefore, the spatial variability of ground motions needs to be considered for reliable assessment of the seismic performance of long multi-frame bridge structures.

In-depth Review of IPCC 5th Assessment Report (IPCC 제5차 과학평가보고서 고찰)

  • Park, Il-Soo;Woon, Yu;Chung, Kyung-Won;Lee, Gangwoong;Owen, Jeffrey S.;Kwon, Won-Tae;Yun, Won-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.188-200
    • /
    • 2014
  • The IPCC 5th Assessment Report (Climate Change 2013: The Physical Science Basis) was accepted at the 36th Session of the IPCC on 26 September 2013 in Stockholm, Sweden. It consists of the full scientific and technical assessment undertaken by Working Group I. This comprehensive assessment of the physical aspects of climate change puts a focus on those elements that are relevant to understand past, document current, and project future of climate change. The assessment builds on the IPCC Fourth Assessment Report and the recent Special Report on Managing the Risk of Extreme Events and Disasters to Advance Climate Change Adaptation. The assessment covers the current knowledge of various processes within, and interactions among, climate system components, which determine the sensitivity and response of the system to changes in forcing, and they quantify the link between the changes in atmospheric constituents, and hence radiative forcing, and the consequent detection and attribution of climate change. Projections of changes in all climate system components are based on model simulations forced by a new set of scenarios. The report also provides a comprehensive assessment of past and future sea level change in a dedicated chapter. The primary purpose of this Technical Summary is to provide the link between the complete assessment of the multiple lines of independent evidence presented in the main report and the highly condensed summary prepared as Policy makers Summary. The Technical Summary thus serves as a starting point for those readers who seek the full information on more specific topics covered by this assessment. Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased. Total radiative forcing is positive, and has led to an uptake of energy by the climate system. The largest contribution to total radiative forcing is caused by the increase in the atmospheric concentration of $CO_2$ since 1750. Human influence on the climate system is clear. This is evident from the increasing greenhouse gas concentrations in the atmosphere, positive radiative forcing, observed warming, and understanding of the climate system. Continued emissions of greenhouse gases will cause further warming and changes in all components of the climate system. Limiting climate change will require substantial and sustained reductions of greenhouse gas emissions. The in-depth review for past, present and future of climate change is carried out on the basis of the IPCC 5th Assessment Report.

State of the Art in Life Assessment for High Temperature Components Using Replication Method (표면복제기법을 이용한 고온 설비의 수명평가 현황과 적용사례)

  • Kim, Duck-Hee;Choi, Hyun-Sun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.489-496
    • /
    • 2010
  • The power generation and chemical industry have been subjected to further material degradation with long term operations and need to predict the remaining service life of components, such as reformer tube and steam turbine rotor, that have operated at elevated temperatures. As a non-destructive technique, replication method with reliable metallurgical life and microstructural soundness assessment has been recognized with strongly useful method until now. Developments of this method have variously accomplished by new quantitative approach, such as carbide analysis, with A-parameter and grain deformation method. An overview of replication, some new techniques for material degradation and life assessment were introduced in this paper. Also, on-site applications and its reasonableness were described. As a result of having analyzed microstructure by replication method, carbide approach was quantitatively useful to life assessment.

A Study on Control of Posture and Balance (자세와 균형 조절에 관한 연구)

  • Jeong Dong-Hoon;Kwon Hyuk-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.3
    • /
    • pp.23-36
    • /
    • 1999
  • The very definitions of posture and balance have changed, as has our understanding of the underlying neural mechanisms, In rehabilitation science, there awe at least two different conceptual theories to describe the neural control of posture and balance : the reflex/hierarchical theory and system theory. A reflex/hierarchical theory suggests the posture and balance result from hierarchically organized reflex responses triggered by independent sensory systems. The systems approach suggests that action emerges from an interaction of the individual with the task and environment. That is to say, the systems approach implies that the ability to control our body's position in space emerges from a complex interaction of musculoskeletal and neural systems, collectively referred to as the postural control system. The specific organization of postural systems determined both by the functional task and the environment in which it is being performed, The postural control system is divided into three basic functional components for assessment : 1) musculoskeletal components, 2) motor coordination components, and 3) sensory organization components. It is proposed that a systemic functional understanding of human balance is critical to effective programs for balance rehabilitation. Thus, this article briefly reviews the basic functional components to consider in designing treatment plan and for the benefit of the balance assessment.

  • PDF