• Title/Summary/Keyword: The Combined Model

Search Result 4,003, Processing Time 0.038 seconds

Genetic Risk Prediction for Normal-Karyotype Acute Myeloid Leukemia Using Whole-Exome Sequencing

  • Heo, Seong Gu;Hong, Eun Pyo;Park, Ji Wan
    • Genomics & Informatics
    • /
    • v.11 no.1
    • /
    • pp.46-51
    • /
    • 2013
  • Normal-karyotype acute myeloid leukemia (NK-AML) is a highly malignant and cytogenetically heterogeneous hematologic cancer. We searched for somatic mutations from 10 pairs of tumor and normal cells by using a highly efficient and reliable analysis workflow for whole-exome sequencing data and performed association tests between the NK-AML and somatic mutations. We identified 21 nonsynonymous single nucleotide variants (SNVs) located in a coding region of 18 genes. Among them, the SNVs of three leukemia-related genes (MUC4, CNTNAP2, and GNAS) reported in previous studies were replicated in this study. We conducted stepwise genetic risk score (GRS) models composed of the NK-AML susceptible variants and evaluated the prediction accuracy of each GRS model by computing the area under the receiver operating characteristic curve (AUC). The GRS model that was composed of five SNVs (rs75156964, rs56213454, rs6604516, rs10888338, and rs2443878) showed 100% prediction accuracy, and the combined effect of the three reported genes was validated in the current study (AUC, 0.98; 95% confidence interval, 0.92 to 1.00). Further study with large sample sizes is warranted to validate the combined effect of these somatic point mutations, and the discovery of novel markers may provide an opportunity to develop novel diagnostic and therapeutic targets for NK-AML.

Study of a self-centering beam-column joint with installed tapered steel plate links

  • Liusheng He;Yangchao Ru;Haifeng Bu;Ming Li
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.391-403
    • /
    • 2023
  • In this study, a new type of self-centering beam-column joint with tapered steel plate links is proposed. Firstly, mechanical property of the basic joint (with the prestressed steel strands only, to provide the self-centering ability) and the combined joint (with both the prestressed steel strands and tapered steel plate links, to provide self-centering and energy dissipation simultaneously) is theoretically analyzed. Then, three joints with different dimensions and combinations of tapered plate links are designed and tested through a series of quasi-static cyclic loading tests. Test results show that a nearly bilinear elastic moment-rotation relationship for the basic joint is obtained. With the addition of tapered steel plate links, typical flag-shape hysteretic curves are obtained, which indicates good self-centering and energy dissipating ability of the combined joint. By installing multiple tapered plate links, stiffness and bearing capacity of the beam-column joint can be enhanced. The theoretical moment-rotation relationships agree well with the test results. A simplified macro model of the proposed joint is developed using OpenSees, which simulates reasonably well its hysteretic behavior.

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.

A Combined Procedure of RSM and LHS for Uncertainty Analyses of CsI Release Fraction Under a Hypothetical Severe Accident Sequence of Station Blackout at Younggwang Nuclear Power Plant Using MAAP3.0B Code

  • Han, Seok-Jung;Tak, Nam-Il;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.507-521
    • /
    • 1996
  • Quantification of uncertainties in the source term estimations by a large computer code, such as MELCOR and MAAP, is an essential process of the current Probabilistic safety assessment. The main objective of the present study is to investigate the applicability of a combined procedure of the response surface method (RSM) based on input determined from a statistical design and the Latin hypercube sampling (LHS) technique for the uncertainty analysis of CsI release fractions under a Hypothetical severe accident sequence of a station blackout at Younggwang nuclear power plant using MAAP3. OB code as a benchmark problem. On the basis of the results obtained in the present work, the RSM is recommended to be used as a principal tool for an overall uncertainty analysis in source term quantifications, while using the LHS in the calculations of standardized regression coefficients (SRC) and standardized rank regression coefficient (SRRC) to determine the subset of the most important input parameters in the final screening step and to check the cumulative distribution functions obtained by RSM. Verification of the response surface model for its sufficient accuracy is a prerequisite for the reliability of the final results that can be obtained by the combined procedure proposed in the present work.

  • PDF

Technological Forecasting and Its Application to Military R&D Programming (기술예측 방법론 및 이의 군사연구계획에의 응용)

  • Lee Sang-Jin;Lee Jin-Ju
    • Journal of the military operations research society of Korea
    • /
    • v.2 no.1
    • /
    • pp.111-125
    • /
    • 1976
  • This paper is to explore technological forecasting methodologies and their application to military R&D programming. Among a number of forecasting methodologies, eight frequently used methods are explained. They are; Delphi method, analogy, growth curve, trend extrapolation, analytical model, breakthrough, normative method, and combined method. Due to the characteristic situation of a developing country, the application of technological forecasting to the Korean military R&D programming is limited. Therefore, only two forecasting methods such as Delphi and normative method are utilized in the development of a decision model for the military R&D programming. The model consists of a dynamic programming using decision tree model, which optimizes the total cost to equip a certain military item under a given range of risk during a given period. Some pitfalls in forecasting methodologies and of the model are discussed.

  • PDF

Evaluation of Highway Design Alternatives Based on Reliability Criterion for Traffic Safety (신뢰도 기준에 근거한 도로설계 대안에 대한 교통안전성 평가)

  • Oh, Heung-Un
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.186-196
    • /
    • 2010
  • It has been well known that traffic accidents occur under combined functional contributions of drivers, vehicles and road facilities, and that evaluation of safety levels for a specific road section or point is generally much complicated. Additionally, most of traffic accidents occur randomly implicating it is necessary to be evaluated in terms of probability theory. Thus, the evaluation model which reflects various characteristics and probabilistic distributions of traffic accidents has been necessary. The present paper provides a reliability based model with variables of probabilistic operating speeds and design speeds together which have been individually explaining associated characteristics in traffic accidents. Consequently, the model made it possible for speed management and road improvement projects to be evaluated in a common index. Application studies were performed in three cases. Through the studies, couples of facts were identified that the model successfully considered the probabilistic operating speeds and design speeds together and that then, the model evaluated road safety alternatives relatively which are complicatedly characterized and differently located.

A mesoscale model for concrete to simulate mechanical failure

  • Unger, Jorg F.;Eckardt, Stefan;Konke, Carsten
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.401-423
    • /
    • 2011
  • In this paper, a mesoscale model of concrete is presented, which considers particles, matrix material and the interfacial transition zone (ITZ) as separate constituents. Particles are represented as ellipsoides, generated according to a prescribed grading curve and placed randomly into the specimen. In this context, an efficient separation procedure is used. The nonlinear behavior is simulated with a cohesive interface model for the ITZ and a combined damage/plasticity model for the matrix material. The mesoscale model is used to simulate a compression and a tensile test. Furthermore, the influence of the particle distribution on the loaddisplacement curve is investigated.

A Study on Explainable Artificial Intelligence-based Sentimental Analysis System Model

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.142-151
    • /
    • 2022
  • In this paper, a model combined with explanatory artificial intelligence (xAI) models was presented to secure the reliability of machine learning-based sentiment analysis and prediction. The applicability of the proposed model was tested and described using the IMDB dataset. This approach has an advantage in that it can explain how the data affects the prediction results of the model from various perspectives. In various applications of sentiment analysis such as recommendation system, emotion analysis through facial expression recognition, and opinion analysis, it is possible to gain trust from users of the system by presenting more specific and evidence-based analysis results to users.

Rules Placement with Delay Guarantee in Combined SDN Forwarding Element

  • Qi, Qinglei;Wang, Wendong;Gong, Xiangyang;Que, Xirong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2870-2888
    • /
    • 2017
  • Recent studies have shown that the flow table size of hardware SDN switch cannot match the number of concurrent flows. Combined SDN Forwarding Element (CFE), which comprises several software switches and a hardware switch, becomes an alternative approach to tackle this problem. Due to the limited capacity of software switch, the way to route concurrent flows in CFE can largely affect the maximum delay that a flow suffers at CFE. As delay-guarantee is a nontrivial task for network providers with the increasing number of delay-sensitive applications, we propose an analytical model of CFE to evaluate a rules placement solution first. Next, we formulate the problem of Rules Placement with delay guarantee in CFE (RPCFE), and present the genetic-based rules placement (GARP) algorithm to solve the RPCFE problem. Further, we validate the analytical model of CFE through simulations in NS-3 and compare the performance of GARP with three benchmark algorithms.

Behaviour and design of Grade 10.9 high-strength bolts under combined actions

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.327-341
    • /
    • 2020
  • The use of high-strength steel and concrete in the construction industry has been gaining increasing attention over the past few decades. With it comes the need to utilise high-strength structural bolts to ensure the design load to be transferred safely through joint regions, where the space is limited due to the reduced structural dimensions. However, research on the behaviour of high-strength structural bolts under various loading combinations is still insufficient. Most of the current design specifications concerning high-strength structural bolts were established based on a very limited set of experimental results. Moreover, as experimental programs normally include limited design parameters for investigation, finite element analysis has become one of the effective methods to assist the understanding of the behaviour of structural components. An accurate and simple full-range stress-strain model for high-strength structural bolts under different loading combinations was therefore developed, where the effects of bolt fracture was included. The ultimate strength capacities of various structural bolts obtained from the present experimental program were compared with the existing design provisions. Furthermore, design recommendations concerning the pure shear and tension, as well as combined shear and tension resistance of Grade 10.9 high-strength structural bolts were provided.