• 제목/요약/키워드: The CAPSS emissions inventory

검색결과 25건 처리시간 0.022초

배출 모델 표준입력자료 작성을 위한 CAPSS2SMOKE 프로그램 개발 (Development of CAPSS2SMOKE Program for Standardized Input Data of SMOKE Model)

  • 이용미;이대균;이미향;홍성철;유철;장기원;홍지형;이석조
    • 한국대기환경학회지
    • /
    • 제29권6호
    • /
    • pp.838-848
    • /
    • 2013
  • The Community Multiscale Air Quality (CMAQ) model is capable of providing high quality atmospheric chemistry profiles through the utilization of high-resolution meteorology and emissions data. However, it cannot simulate air quality accurately if input data are not appropriate and reliable. One of the most important inputs required by CMAQ is the air pollutants emissions, which determines air pollutants concentrations during the simulation. For the CMAQ simulation of Korean peninsula, we, in general, use the Korean National Emission Inventory data which are estimated by Clean Air Policy Support System (CAPSS). However, since they are not provided by model-ready emission data, we should convert CAPSS emissions into model-ready data. The SMOKE is the emission model we used in this study to generate CMAQ-ready emissions. Because processing the emissions data is very monotonous and tedious work, we have developed CAPSS2SMOKE program to convert CAPSS emissions into SMOKE-ready data with ease and effective. CAPSS2SMOKE program consists of many codes and routines such as source classification code, $PM_{10}$ to $PM_{2.5}$ ratio code, map projection conversion routine, spatial allocation routine, and so on. To verify the CAPSS2SMOKE program, we have run SMOKE using the CAPSS 2009 emissions and found that the SMOKE results inherits CAPSS emissions quite well.

Korea Emissions Inventory Processing Using the US EPA's SMOKE System

  • Kim, Soon-Tae;Moon, Nan-Kyoung;Byun, Dae-Won W.
    • Asian Journal of Atmospheric Environment
    • /
    • 제2권1호
    • /
    • pp.34-46
    • /
    • 2008
  • Emissions inputs for use in air quality modeling of Korea were generated with the emissions inventory data from the National Institute of Environmental Research (NIER), maintained under the Clean Air Policy Support System (CAPSS) database. Source Classification Codes (SCC) in the Korea emissions inventory were adapted to use with the U.S. EPA's Sparse Matrix Operator Kernel Emissions (SMOKE) by finding the best-matching SMOKE default SCCs for the chemical speciation and temporal allocation. A set of 19 surrogate spatial allocation factors for South Korea were developed utilizing the Multi-scale Integrated Modeling System (MIMS) Spatial Allocator and Korean GIS databases. The mobile and area source emissions data, after temporal allocation, show typical sinusoidal diurnal variations with high peaks during daytime, while point source emissions show weak diurnal variations. The model-ready emissions are speciated for the carbon bond version 4 (CB-4) chemical mechanism. Volatile organic carbon (VOC) emissions from painting related industries in area source category significantly contribute to TOL (Toluene) and XYL (Xylene) emissions. ETH (Ethylene) emissions are largely contributed from point industrial incineration facilities and various mobile sources. On the other hand, a large portion of OLE (Olefin) emissions are speciated from mobile sources in addition to those contributed by the polypropylene industry in point source. It was found that FORM (Formaldehyde) is mostly emitted from petroleum industry and heavy duty diesel vehicles. Chemical speciation of PM2.5 emissions shows that PEC (primary fine elemental carbon) and POA (primary fine organic aerosol) are the most abundant species from diesel and gasoline vehicles. To reduce uncertainties in processing the Korea emission inventory due to the mapping of Korean SCCs to those of U.S., it would be practical to develop and use domestic source profiles for the top 10 SCCs for area and point sources and top 5 SCCs for on-road mobile sources when VOC emissions from the sources are more than 90% of the total.

Korean National Emissions Inventory System and 2007 Air Pollutant Emissions

  • Lee, Dae-Gyun;Lee, Yong-Mi;Jang, Kee-Won;Yoo, Chul;Kang, Kyoung-Hee;Lee, Ju-Hyoung;Jung, Sung-Woon;Park, Jung-Min;Lee, Sang-Bo;Han, Jong-Soo;Hong, Ji-Hyung;Lee, Suk-Jo
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권4호
    • /
    • pp.278-291
    • /
    • 2011
  • Korea has experienced dramatic development and has become highly industrialized and urbanized during the past 40 years, which has resulted in rapid economic growth. Due to the industrialization and urbanization, however, air pollutant emission sources have increased substantially. Rapid increases in emission sources have caused Korea to suffer from serious air pollution. An air pollutant emissions inventory is one set of essential data to help policymakers understand the current status of air pollution levels, to establish air pollution control policies and to analyze the impacts of implementation of policies, as well as for air quality studies. To accurately and realistically estimate administrative district level air pollutant emissions of Korea, we developed a Korean Emissions Inventory System named the Clean Air Policy Support System (CAPSS). In CAPSS, emissions sources are classified into four levels. Emission factors for each classification category are collected from various domestic and international research reports, and the CAPSS utilizes various national, regional and local level statistical data, compiled by approximately 150 Korean organizations. In this paper, we introduced for the first time, a Korean national emissions inventory system and release Korea's official 2007 air pollutant emissions for five regulated air pollutants.

수도권 초미세먼지 농도모사: ( I ) 2013 CAPSS 배출량 목록의 전구물질별 기여도 추정 (PM2.5 Simulations for the Seoul Metropolitan Area: ( I ) Contributions of Precursor Emissions in the 2013 CAPSS Emissions Inventory)

  • 김순태;배창한;김병욱;김현철
    • 한국대기환경학회지
    • /
    • 제33권2호
    • /
    • pp.139-158
    • /
    • 2017
  • CMAQ (Community Multiscale Air Quality Model) simulations were carried out to estimate the potential range of contributions on surface $PM_{2.5}$ concentrations over the Seoul Metropolitan Area (SMA) with the gaseous precursors and Primary Particulate Matters(PPM) available from a recent national emissions inventory. In detail, on top of a base simulation utilizing the 2013 Clean Air Policy Supporting System (CAPSS) emission inventory, a set of Brute Force Method (BFM) simulations after reducing anthropogenic $NO_x$, $SO_2$, $NH_3$, VOCs, and PPM emissions released from area, mobile, and point sources in SMA by 50% were performed in turn. Modeling results show that zero-out contributions(ZOC) of $NH_3$ and PPM emissions from SMA are as high as $4{\sim}5{\mu}g/m^3$ over the region during the modeling period. On the contrary, ZOC of local $NO_x$ and $SO_2$ emissions to SMA $PM_{2.5}$ are less than $1{\mu}g/m^3$. Moreover, model analyses indicate that a wintertime $NO_x$ reduction at least up to 50% increases SMA $PM_{2.5}$ concentrations, probably due to increased HNO3 formation and conversion to aerosols under more abundant ozone and radical conditions after the $NO_x$ reduction. However, a nation-wide $NO_x$ reduction decreased SMA $PM_{2.5}$ concentrations even during winter, which implies that nation-wide reductions would be more effective to curtail SMA $PM_{2.5}$ concentrations than localized efforts.

GHG-CAPSS 신뢰도 평가 방법 개발을 위한 연구 (A Study on Development of Reliability Assessment of GHG-CAPSS)

  • 김혜림;김승도;홍유덕;이수빈;정주영
    • 한국기후변화학회지
    • /
    • 제2권3호
    • /
    • pp.203-219
    • /
    • 2011
  • 최근 인벤토리 구축이 활발해짐에 따라 인벤토리의 정확도 및 신뢰도 평가에 대한 수요 역시 크게 증가하고 있다. 따라서 본 연구에서는 GHG-CAPSS의 신뢰도를 향상시키는데 지표로 활용될 GHG-CAPSS의 신뢰도를 평가하기 위한 방법론을 개발하는데 그 목적을 두고 있다. 본 논문에서는 GHG-CAPSS 신뢰도 평가 방법을 정성적 정량적으로 구분하였으며, 정성적 정량적 평가 결과를 종합하여 신뢰도를 결정할 수 있는 방법을 고안하여 액체 화석 연료 연소에 의한 $CO_2$ 배출량과 매립에 의한 $CH_4$ 배출량에 시범 적용하였다. 시범 적용 결과, 액체 화석 연료연소의 신뢰도 정성적 및 정량적 점수는 각각 25점(/50점), 50점(/50점)으로 최종적으로 75점으로 나타났으며, 매립에 의한 $CH_4$ 배출량의 신뢰도 정성적 및 정량적 점수는 각각 22점(/25점), 20점(/50점)으로 최종적으로 42점으로 평가되었다. 따라서 GHG-CAPSS의 액체화석연료 연소 부문과 매립 부문 배출량의 신뢰도를 평가한 결과, 두 배출원의 정성적 신뢰도는 비슷하였으나, 정량적 평가에서 큰 차이를 보였다. 이는 각 배출원 간의 불확도가 큰 편차를 보였기 때문으로 액체화석연료 연소에 의한 $CO_2$ 배출량의 경우, 신뢰도 향상을 위해 정성적 신뢰도 부분을 향상시키는 데 주력해야 하며, 매립에 의한 $CH_4$ 배출량의 경우 정량적 신뢰도 향상을 위한 연구가 필요할 것으로 사료된다. 또한, 두 배출원 모두, 신뢰도 정성 평가의 점수를 향상시키기 위해 품질 관리 절차 또는 지침서를 개발하여 품질 관리의 수준을 향상시킬 필요가 있는 것으로 사료된다.

2007년 6월 수도권 오존모사 I - 광화학측정자료를 이용한 SAPRC99 화학종별 휘발성유기물질 배출량 입력자료 평가 (Ozone Simulations over the Seoul Metropolitan Area for a 2007 June Episode, Part I: Evaluating Volatile Organic Compounds Emissions Speciated for the SAPRC99 Chemical Mechanism)

  • 김순태
    • 한국대기환경학회지
    • /
    • 제27권5호
    • /
    • pp.580-602
    • /
    • 2011
  • Volatile organic compound (VOC) emissions in the 2007 CAPSS (Clean Air Protection Supporting System) emissions inventory are chemically speciated for the SAPRC99 (Statewide Air Pollution Research Center 99) mechanism, following the Source Classification Code (SCC) matching method to borrow the U.S.EPA's chemical speciation profiles. CMAQ simulations with High-order Direct Decoupled Method (HDDM) are in turn applied to evaluate uncertainty in the method by comparing the simulated model VOC species to the observations in the Seoul Metropolitan Area (SMA) for a 2007 June episode. Simulations under-predicted ALK1 to ALK4 in SAPRC99 by a factor of 2 to 5 and over-predicted ALK5 by a factor of 7.5 while ARO1, ARO2, OLE1, and ethylene (ETH) are comparable to the observations, showing relative difference by 10 to 30%. OLE2 emissions are roughly 4 times overestimated. Emission rates for individual VOC model species are revised referring to the ratio of simulated to observed concentrations. Impact of the VOC emission changes on the overall ozone prediction was insignificant for the days of which 1-hr maximum ozone are lower than 100 ppb. However, simulations showed ozone difference by 5 to 10 ppb when high ozone above 120 ppb was observed in the vicinity of Seoul. This result suggests that evaluations on individual model VOC emissions be necessary to lead ozone control plans to the right direction. Moreover, the simulated ratios of ARO1 and ARO2 to $NO_x$ are roughly 50% lower than the observed ones, which imply that adjustment in $NO_x$ and VOC emission rates may be required to mimic the real VOC/$NO_x$ condition over the area.

Characteristics of Ozone Precursor Emissions and POCP in the Biggest Port City in Korea

  • Song, Sang-Keun;Shon, Zang-Ho;Son, Hyun Keun
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권2호
    • /
    • pp.146-157
    • /
    • 2015
  • Emissions of ozone precursors ($NO_x$ and VOCs) and photochemical ozone creation potentials (POCPs) of VOC emission sources were investigated in the largest port city (i.e., Busan), Korea during the year 2011. This analysis was performed using the Clean Air Policy Support System (CAPSS) national emission inventory provided by the National Institute of Environmental Research (NIER), Korea. For $NO_x$, the emissions from off-road mobile sources in Busan were the most dominant (e.g., $31,202ton\;yr^{-1}$), accounting for about 60% of the total $NO_x$ emissions. The emission from shipping of off-road mobile sources (e.g., $24,922ton\;yr^{-1}$) was a major contributor to their total emissions, amounting to 47% of the total $NO_x$ emissions due to the port-related activities in Busan. For VOCs, the emission source category of solvent usage was predominant (e.g., $36,062ton\;yr^{-1}$), accounting for approximately 82% of the total VOC emissions. Out of solvent usages, the emission from painting was the most dominant ($22,733ton\;yr^{-1}$), comprising 52% of the total emissions from solvent usages. The most dominant VOC species emitted from their sources in Busan was toluene, followed by xylene, butane, ethylbenzene, n-butanol, isopropyl alcohol, and propane. The major emission sources of toluene and xylene were found to be painting of coil coating and ship building, respectively. The value of POCP for the off-road mobile source (61) was the highest in ten major activity sectors of VOC emissions. Since the POCP value of ship transport of off-road mobile source (72) was also high enough to affect ozone concentration, the ship emission can play a significant role in ozone production of the port city like Busan.

인천항 항만시설에서의 대기오염물질 배출량 산정 (Estimation of Air Pollutant Emissions from Port-Related Sources in the Port of Incheon)

  • 한세현;윤종상;김우중;서윤호;정용원
    • 한국대기환경학회지
    • /
    • 제27권4호
    • /
    • pp.460-471
    • /
    • 2011
  • A port has been regarded as a significant contributor to air pollution in the surrounding areas. Port-related air pollutants are released from not only marine vessels, but also various land-side sources at ports, which include cargo handling equipment, vehicles, locomotives, and fugitive dust sources by port activities such as bulk handling and vehicle movements. However, most studies in Korea have only focused on vessel emissions and there is a lack of information on the emissions from other sources at port. In this study, in order to establish the port-related emission inventory and evaluate the relative contribution of these sources to air emissions from the Port of Incheon, the emissions from land-side sources were estimated and the CAPSS (Clean Air Policy Support System) data for vessel emissions were used. In particular, the detailed information and activity data for the cargo handling equipment source were collected and the emission factors and emissions by equipment types were calculated using U.S. EPA methodologies. Total HC, CO, $NO_x$, $PM_{10}$, and $SO_2$ emissions from port-related sources including the vessel in 2007 were calculated as 229 ton/year, 638 ton/year, 4,861 ton/year, 307 ton/year, and 3,995 ton/year, respectively. It was found that the vessel was the largest contributor to air pollutant emissions from the port, the cargo handling equipment was responsible for about from 8% to 13% of HC, CO, and $NO_x$ emissions and the resuspended road dust contributed about 39% for $PM_{10}$ emissions. The results of this study will be used to establish the management and reduction strategies of air pollution in the port.