• Title/Summary/Keyword: The Boltzmann equation

Search Result 219, Processing Time 0.02 seconds

A study on the electron ionization and attachment coefficients ins $SF_6$ gas ($SF_6$ 가스의 전리 및 부착계수에 관한 연구)

  • Seo, Sang-Hyeon;Yu, Heoi-Young;Kim, Sang-Nam;Ha, Sung-Chul
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.6
    • /
    • pp.96-103
    • /
    • 1996
  • This paper describes the electron transport characteristics in SF6 gas calculated for range of E/N values from 150~ 800[Td) by the Monte Carlo simulation and Boltzmann equation method using a set of electron collision cross sections detennined by the authors and the values of electron swarm parameters are obtained by TOF method. The results gRined that the values of the electron swarm parameters such as the electron drift velocity, the electron ionization or Rttachment coefficients, longitudinal and transverse diffusion coefficients agree with the experimental and theoretical for a range of E/N. The properties of electron avalanches is concerned electron energy non--equilibrium region. The electron energy distributions function were analysed in sulphur hexafluoride at E/N : 500~800[Td) for a case of non-equilibrium region in the mean electron energy. The validity of the results obtained has been confilll1ed by a TOF method.

  • PDF

Reactor core analysis through the SP3-ACMFD approach Part II: Transient solution

  • Mirzaee, Morteza Khosravi;Zolfaghari, A.;Minuchehr, A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.230-237
    • /
    • 2020
  • In this part, an implicit time dependent solution is presented for the Boltzmann transport equation discretized by the analytic coarse mesh finite difference method (ACMFD) over the spatial domain as well as the simplified P3 (SP3) for the angular variable. In the first part of this work we proposed a SP3-ACMFD approach to solve the static eigenvalue equations which provide the initial conditions for temp dependent equations. Having solved the 3D multi-group SP3-ACMFD static equations, an implicit approach is resorted to ensure stability of time steps. An exponential behavior is assumed in transverse integrated equations to establish a relationship between flux moments and currents. Also, analytic integration is benefited for the time-dependent solution of precursor concentration equations. Finally, a multi-channel one-phase thermal hydraulic model is coupled to the proposed methodology. Transient equations are then solved at each step using the GMRES technique. To show the sufficiency of proposed transient SP3-ACMFD approximation for a full core analysis, a comparison is made using transport peers as the reference. To further demonstrate superiority, results are compared with a 3D multi-group transient diffusion solver developed as a byproduct of this work. Outcomes confirm that the idea can be considered as an economic interim approach which is superior to the diffusion approximation, and comparable with transport in results.

A Numerical Study on Phonon Spectral Contributions to Thermal Conduction in Silicon-on-Insulator Transistor Using Electron-Phonon Interaction Model (전자-포논 상호작용 모델을 이용한 실리콘 박막 소자의 포논 평균자유행로 스펙트럼 열전도 기여도 수치적 연구)

  • Kang, Hyung-sun;Koh, Young Ha;Jin, Jae Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.409-414
    • /
    • 2017
  • The aim of this study is to understand the phonon transfer characteristics of a silicon thin film transistor. For this purpose, the Joule heating mechanism was considered through the electron-phonon interaction model whose validation has been done. The phonon transport characteristics were investigated in terms of phonon mean free path for the variations in the device power and silicon layer thickness from 41 nm to 177 nm. The results may be used for developing the thermal design strategy for achieving reliability and efficiency of the silicon-on-insulator (SOI) transistor, further, they will increase the understanding of heat conduction in SOI systems, which are very important in the semiconductor industry and the nano-fabrication technology.

Analysis Study of Liquid Apogee Engine Plume for Geostationary Satellite (정지궤도위성 궤도전이용 액체원지점엔진의 배기가스 해석 연구)

  • Lee, Chi Seong;Lee, Kyun Ho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.8-15
    • /
    • 2018
  • The geostationary satellite uses a liquid apogee engine, to obtain a required velocity increment to enter a geostationary orbit. However, as the liquid apogee engine operates in the vacuum, a considerable disbursement of exhaust plume flow, from the liquid apogee engine can trigger a backflow. As this backflow may possibly collide with the satellite directly, it can cause adverse effects such as surface contamination, thermal load, and altitude disturbance, that can generate performance reduction of the geostationary satellite. So, this study investigated exhaust plume behavior of 400 N grade liquid apogee engine numerically. To analyze exhaust plume behavior in vacuum condition, the DSMC (Direct Simulation Monte Carlo) method based on Boltzmann equation is used. As a result, thermal fluid characteristics of exhaust plume such as temperature and number density, are observed.

Application of Perturbation-based Sensitivity Analysis to Nuclear Characteristics (섭동론적 감도해석 이론의 원자로 핵특성에의 응용)

  • Byung Soo Lee;Mann Cho;Jeong Soo Han;Chung Hum Kim
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.78-84
    • /
    • 1986
  • An equation of material number density sensitivity coefficient is derived using first-order perturbation theory. The beginning of cycle of Super-Phenix I is taken as the reference system for this study. Effective multiplication factor of the reference system is defined as system response function and fuel enrichment and fuel effective density are chosen for the variation of reference input data since they are described by material number density which is a component of Boltzmann operator. The nuclear computational code system (KAERI-26 group cross section library/1DX/2DB/PERT-V) is employed for this calculation. Sensitivity coefficient of fuel enrichment on effective multiplication factor is 4.576 and sensitivity coefficient of effective fuel density on effective multiplication factor is 0.0756. This work shows that sensitivity methodology is lesser timeconsuming and gives more informations on important design parameters in comparison with the direct iterative calulation through large computer codes.

  • PDF

Estimation of Daily Net Radiation from Synoptic Meteorological Data (종관기상자료에 의한 순폭사량 추정)

  • 이변우;김병찬;명을재
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.3
    • /
    • pp.204-208
    • /
    • 1991
  • Five models for net radiation estimation reported by Linacre(1968), Berljand(1956), Nakayama et al. (1983), Chang (1970) and Doorenbos et al. (1977) were tested for the adaptability to Korea. A new model with effective longwave radiation term parameterized by air temperature, solar radiation and vapor pressure was formulated and tested for its accuracy. Above five models with original parameter values showed large absolute mean deviations ranging from 0.86 to 1.64 MJ/$m^2$/day. The parameters of the above five models were reestimated by using net radiation and meteorological elements measured in Suwon, Korea. These five models with new parameter values showed absolute mean deviations ranging from 0.74 to 0.88 MJ/$m^2$/day. The following model was newly formulated: Rn=(1- $\alpha$) Rs- $\sigma$ $T_{k}$$^{4}$ (0.0103 Exp (0 .0731 Rs) -0.0475 (equation omitted) +0 .2478) ($R^2$=0.997, n=63) where $\alpha$ =albedo, $\sigma$=Stefan-Boltzmann constant, Rs=solar radiation in MJ/$m^2$/day, Tk =air temperature in Kelvin and $e_{a}$=vapor pressure in mb. This model revealed 0.4988 MJ/$m^2$/day in absolute mean deviation when applied to an independent set of meteorological data.a.a.

  • PDF

FORMATION AND EVOLUTION OF SELF-INTERACTING DARK MATTER HALOS

  • AHN KYUNGJIN;SHAPIRO PAUL R.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.89-95
    • /
    • 2003
  • Observations of dark matter dominated dwarf and low surface brightness disk galaxies favor density profiles with a flat-density core, while cold dark matter (CDM) N-body simulations form halos with central cusps, instead. This apparent discrepancy has motivated a re-examination of the microscopic nature of the dark matter in order to explain the observed halo profiles, including the suggestion that CDM has a non-gravitational self-interaction. We study the formation and evolution of self-interacting dark matter (SIDM) halos. We find analytical, fully cosmological similarity solutions for their dynamics, which take proper account of the collisional interaction of SIDM particles, based on a fluid approximation derived from the Boltzmann equation. The SIDM particles scatter each other elastically, which results in an effective thermal conductivity that heats the halo core and flattens its density profile. These similarity solutions are relevant to galactic and cluster halo formation in the CDM model. We assume that the local density maximum which serves as the progenitor of the halo has an initial mass profile ${\delta}M / M {\propto} M^{-{\epsilon}$, as in the familiar secondary infall model. If $\epsilon$ = 1/6, SIDM halos will evolve self-similarly, with a cold, supersonic infall which is terminated by a strong accretion shock. Different solutions arise for different values of the dimensionless collisionality parameter, $Q {\equiv}{\sigma}p_br_s$, where $\sigma$ is the SIDM particle scattering cross section per unit mass, $p_b$ is the cosmic mean density, and $r_s$ is the shock radius. For all these solutions, a flat-density, isothermal core is present which grows in size as a fixed fraction of $r_s$. We find two different regimes for these solutions: 1) for $Q < Q_{th}({\simeq} 7.35{\times} 10^{-4}$), the core density decreases and core size increases as Q increases; 2) for $Q > Q_{th}$, the core density increases and core size decreases as Q increases. Our similarity solutions are in good agreement with previous results of N-body simulation of SIDM halos, which correspond to the low-Q regime, for which SIDM halo profiles match the observed galactic rotation curves if $Q {\~} [8.4 {\times}10^{-4} - 4.9 {\times} 10^{-2}]Q_{th}$, or ${\sigma}{\~} [0.56 - 5.6] cm^2g{-1}$. These similarity solutions also show that, as $Q {\to}{\infty}$, the central density acquires a singular profile, in agreement with some earlier simulation results which approximated the effects of SIDM collisionality by considering an ordinary fluid without conductivity, i.e. the limit of mean free path ${\lambda}_{mfp}{\to} 0$. The intermediate regime where $Q {\~} [18.6 - 231]Q_{th}$ or ${\sigma}{\~} [1.2{\times}10^4 - 2.7{\times}10^4] cm^2g{-1}$, for which we find flat-density cores comparable to those of the low-Q solutions preferred to make SIDM halos match halo observations, has not previously been identified. Further study of this regime is warranted.

A Study on the Theory of $\frac {1}{f}$ Noise in Electronic Devies (전자소자에서의 $\frac {1}{f}$잡음에 관한 연구)

  • 송명호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.3 no.1
    • /
    • pp.18-25
    • /
    • 1978
  • The 1/f noise spectrum of short-circuited output drain current due to the Shockley-Read-Hal] recombination centers with a single lifetime in homogeneous nondegenerate MOS-field effcte transtors with n-type channel is calculated under the assumptions that the quasi-Fermi level for the carriers in each energy band can not be defined if we include the fluctuation for time varying quantities. and so 1/f noise is a majority carrier effect. Under these assumptions the derived 1/f noise in this paper show some essential features of the 1/f noise in MOS-field effect transistors. That is, it has no lowfrequency plateau and is proportionnal to the channel cross area A and to the driain bias voltage Vd and inversely proportional to the channel length L3 in MOS field effect transistors. This model can explain the discrepancy between the transition frequency of the noise spectrum from 1/f- response to 1/f2 and the frequency corresponding to the relaxation time related to the surface centers in p-n junction diodes. In this paper the results show that the functional form of noise spectrum is greatly influenced by the functional forms of the electron capture probability cn (E) and the relaxation time r (E) for scattering and the case of lattice scattering show to be responsible for the 4 noise in MOS fold effect transistors. So we canconclude that the source of 1/f noise is due to lattice scattering.

  • PDF

Regulation of L-type Calcium Channel Current by Somatostatin in Guinea-Pig Gastric Myocytes

  • Kim, Young-Chul;Sim, Jae-Hoon;Lee, Sang-Jin;Kang, Tong-Mook;Kim, Sung-Joon;Kim, Seung-Ryul;Youn, Sei-Jin;Lee, Sang-Jeon;Xu, Wen Xie;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.103-108
    • /
    • 2005
  • To study the direct effect of somatostatin (SS) on calcium channel current ($I_{Ba}$) in guinea-pig gastric myocytes, $I_{Ba}$ was recorded by using whole-cell patch clamp technique in single smooth muscle cells. Nicardipine ($1{\mu}M$), a L-type $Ca^{2+}$ channel blocker, inhibited $I_{Ba}$ by $98{\pm}1.9$% (n=5), however $I_{Ba}$ was decreased in a reversible manner by application of SS. The peak $I_{Ba}$ at 0 mV were decreased to $95{\pm}1.5$, $92{\pm}1.9$, $82{\pm}4.0$, $66{\pm}5.8$, $10{\pm}2.9$% at $10^{-10}$, $10^{-9}$, $10^{-8}$, $10^{-7}$, $10^{-5}$ M of SS, respectively (n=3∼6; $mean{\pm}SEM$). The steady-state activation and inactivation curves of $I_{Ba}$ as a function of membrane potentials were well fitted by a Boltzmann equation. Voltage of half-activation ($V_{0.5}$) was $-12{\pm}0.5$ mV in control and $-11{\pm}1.9$ mV in SS treated groups (respectively, n=5). The same values of half-inactivation were $-35{\pm}1.4$ mV and $-35{\pm}1.9$ mV (respectively, n=5). There was no significant difference in activation and inactivation kinetics of $I_{Ba}$ by SS. Inhibitory effect of SS on $I_{Ba}$ was significantly reduced by either dialysis of intracellular solution with $GDP_{\beta}S$, a non-hydrolysable G protein inhibitor, or pretreatment with pertussis toxin (PTX). SS also decreased contraction of guinea-pig gastric antral smooth muscle. In conclusion, SS decreases voltage-dependent L-type calcium channel current ($VDCC_L$) via PTXsensitive signaling pathways in guinea-pig antral circular myocytes.