• 제목/요약/키워드: The Big 6

검색결과 2,152건 처리시간 0.033초

빅데이터 분석을 이용한 패션 플랫폼과 패션 스마트 팩토리에 대한 인식 연구 (A Study on the Perception of Fashion Platforms and Fashion Smart Factories using Big Data Analysis)

  • 송은영
    • 한국의류산업학회지
    • /
    • 제23권6호
    • /
    • pp.799-809
    • /
    • 2021
  • This study aimed to grasp the perceptions and trends in fashion platforms and fashion smart factories using big data analysis. As a research method, big data analysis, fashion platform, and smart factory were identified through literature and prior studies, and text mining analysis and network analysis were performed after collecting text from the web environment between April 2019 and April 2021. After data purification with Textom, the words of fashion platform (1,0591 pieces) and fashion smart factory (9750 pieces) were used for analysis. Key words were derived, the frequency of appearance was calculated, and the results were visualized in word cloud and N-gram. The top 70 words by frequency of appearance were used to generate a matrix, structural equivalence analysis was performed, and the results were displayed using network visualization and dendrograms. The collected data revealed that smart factory had high social issues, but consumer interest and academic research were insufficient, and the amount and frequency of related words on the fashion platform were both high. As a result of structural equalization analysis, it was found that fashion platforms with strong connectivity between clusters are creating new competitiveness with service platforms that add sharing, manufacturing, and curation functions, and fashion smart factories can expect future value to grow together, according to digital technology innovation and platforms. This study can serve as a foundation for future research topics related to fashion platforms and smart factories.

대기오염에 따른 환경성 질환의 인자 분석: Big Data를 통한 Google 트렌드 데이터의 분석 및 영향 (Factor analysis of Environmental Disease by Air Pollution: Analysis and Implication of Google Trends Data with Big Data)

  • 최길용;이수민;이철민;서성철
    • 한국환경보건학회지
    • /
    • 제44권6호
    • /
    • pp.563-571
    • /
    • 2018
  • Objectives: The purpose of this study was to investigate the environmental pollution caused by exposure to air pollution in Korea. Therefore, it is necessary to investigate environmental and health factors through big data. Methods: Among the environmental diseases, the data centered on "percentage per day in 2015 to 2018". Data of environmental diseases and concentrations of air pollution monitoring network were analyzed. Results: Lung cancer and bronchiolitis obliterans were correlated with 0.027 and 0.0158, respectively, in the contamination concentration of fine dust ($PM_{10}$). Ozone, COPD, allergic rhinitis, and bronchiolitis obliterans were correlated with 0.0022, 0.0028 and 0.0093, respectively. At the concentration of $SO_2$ and the diseases of asthma, atopic dermatitis, lung cancer and bronchiolitis obliterans were 0.0008, 0.0523, 0.0016 and 0.0126, respectively. Conclusions: We surveyed the trends of air pollution according to the characteristics of Seoul area in Korea and evaluated the perception of Korea and the world. As a result, respiratory lung disease is thought to be a major factor in exposure to environmental pollution.

Social Big Data Analysis for Franchise Stores

  • Kim, Hyeon Gyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권8호
    • /
    • pp.39-46
    • /
    • 2021
  • 프랜차이즈 스토어를 대상으로 소셜 빅데이터 분석을 수행할 경우, 프랜차이즈에 속한 여러 분점의 리뷰들이 함께 수집될 수 있어 분석 결과가 왜곡될 수 있다. 이 경우 분석 정확도를 높이기 위해서는 분석 대상이 아닌 타 분점의 리뷰들을 적절히 필터링할 수 있어야 한다. 본 논문에서는 프랜차이즈 스토어들의 특성을 반영한 소셜 빅데이터 분석 방법을 제안한다. 제안 방법은 검색어 설정 방법과 리뷰 필터링 방법을 포함한다. 검색어 설정을 위해, 소상공인진흥공단에서 제공하는 공공데이터를 기반으로 검색에 필요한 지역명을 추출한다. 그리고 리뷰 필터링을 위해, 네이버 및 카카오 등에서 제공하는 검색 API를 이용하여 프랜차이즈 분점 정보를 알아내고, 분석 대상이 아닌 타 분점의 리뷰들을 필터링하는데 이용한다. 제안 방법의 검증을 위해 온라인에서 수집된 실제 리뷰를 대상으로 실험을 수행하였으며, 제안 방법의 리뷰 필터링 정확도는 평균 93.6%로 조사되었다.

공공데이터를 활용한 국가정보화 전략연구 - 시나리오플래닝을 적용하여 - (The Study on Strategy of National Information for Electronic Government of S. Korea with Public Data analysed by the Application of Scenario Planning)

  • 이상윤;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제7권6호
    • /
    • pp.1259-1273
    • /
    • 2012
  • 최근의 웹에서 유비쿼터스로의 지식정보화사회의 급속한 진행에 의한 IT와 컴퓨팅기술에 있어서의 빅데이터 시대라는 새로운 패러다임 도래는 한국 정부 및 각국 정부에 있어, 전자정부 및 국가정보화 추진에 있어서의 주목할 만한 전환점이 되고 있다. 따라서 본 연구는 미래예측방법으로 많이 활용되고 있는 시나리오 플래닝 방법론을 적용하여 한국 전자정부 및 국가정보화 발전의 바람직한 미래상을 도출하였다. 곧 빅데이터 시대에 합당한 한국 전자정부 및 국가정보화의 상대적 미래우위전략을 찾고자, 정부의 빅데이터인 공공데이터의 활용에 대한 발전방안을 모색하였으며, 그 결과 한국의 전자정부 및 국가정보화에 부합하는 공공데이터를 활용한 대국민공개강화 전략을 도출하였다. 또한 '인간의 이해'보다는 '기계의 이해'를 지향하는 시멘틱웹 기술과 함께하는 링크드데이터 기술의 적용 아래에서의 개발을 제안하였다.

IoT 환경에서 모바일 기반 빅데이터 처리 및 모니터링 기술 (Mobile-based Big Data Processing and Monitoring Technology in IoT Environment)

  • 이승해;김주호;신동윤;신동진;박정민;김정준
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1-9
    • /
    • 2018
  • 현재 이슈가 되고 있는 4차 산업혁명에서 다양한 빅데이터 기술들을 통하여 기존의 느린 속도 보다 빠른 분석 결과를 즉각적으로 받아 볼 수 있고, 모바일과 웹에서 실시간 모니터링을 하는 연구를 진행하였다. 먼저 IoT 기기인 Raspberry Pi를 이용하여 다양한 비정형 센서 데이터를 생성하고 센서 데이터를 실시간 수집하고, 수집한 데이터를 여러 개의 노드를 이용해 분산 저장한 뒤 저장된 센서 데이터를 가공, 정제 처리하여 분석 모델 및 알고리즘을 통해 분석 결과를 시각화하여 출력한다. 이러한 방법들을 이용한 진행은 IoT를 이용한 빅데이터 및 모바일 관련 분야에서 필요한 고급 인력을 양성 및 데이터를 효율적이고 빠르게 처리할 수 있다. 또한, 실시간 모니터링을 통하여 연구결과의 신뢰성을 확인할 수 있는 정보를 제공하고자 한다.

빅데이터, IoT, 인공지능 키워드 네트워크 분석 (Analysis on Big data, IoT, Artificial intelligence using Keyword Network)

  • 구영덕
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1137-1144
    • /
    • 2020
  • 본 논문에서는 빅데이터, IoT, 인공지능 관련 네트워크 분석을 통해 국내 연구동향을 파악하고 관련 시사점 도출을 목적으로 한다. 이를 위해, 2018년 국가연구개발정보를 활용하여 분석을 수행하였으며, 주요 기초 통계 분석과 언어 네트워크 분석을 수행하였다. 분석 결과, 빅데이터, IoT, 인공지능 관련 연구개발은 기초단계, 개발단계를 중심으로 연구가 진행 중이며, 대학과 중소기업의 비중이 높은 것으로 나타났다. 또한 언어 네트워크 분석 결과, 관련 분야는 스마트팜, 헬스케어 분야에 활용하기 위한 연구를 중심으로 이루어 지고 있는 것으로 판단된다. 이러한 연구결과를 바탕으로 본 연구에서는 인공지능을 활용하기 위해서는 빅데이터가 반드시 필요하며, 개인 식별화 연구가 더욱 활발히 진행되어야 한다는 점과 단순 R&D 활동이 아닌 기술사업화가 이루어 지기 위한 전 주기 지원이 필요하며, 적용 분야를 확대할 필요가 있다는 점을 주장하였다.

비대칭 멀티코어 모바일 단말에서 SVM 기반 저전력 스케줄링 기법 (SVM-based Energy-Efficient scheduling on Heterogeneous Multi-Core Mobile Devices)

  • 한민호;고영배;임성화
    • 한국산업정보학회논문지
    • /
    • 제27권6호
    • /
    • pp.69-75
    • /
    • 2022
  • 본 논문에서 비대칭 멀티 코어 구조의 스마트 모바일 단말에서 실시간성 보장과 에너지 소비량 절감을 고려한 작업 스케쥴링 기법을 제안한다. 최근 VR, AR, 3D 등 고성능 응용프로그램은 실시간과 고수준 작업이 요구된다. 스마트 단말은 배터리에 의존적이므로 높은 에너지 효율을 위해서 big.LITTLE 구조가 적용되었지만, 이를 제대로 활용하지 못함으로써 에너지 절감효과가 반감되는 문제점이 있었다. 본 논문에서는 big.LITTLE 구조의 단말에서 실시간성과 높은 에너지 효율을 높일 수 있는 비대칭 멀티코어 할당 기법을 제안한다. 이 기법은 SVM 모델을 활용해서 실제 작업의 실행시간을 예측하고 이를 통해서 에너지 소모와 실행시간을 최적화한 알고리즘을 제안한다. 상용 스마트폰에서의 비교실험을 통하여 제안기법이 기존 기법과 유사한 실행시간을 보장하면서 에너지 소비량의 절감을 보였다.

서버 성능 관리를 위한 장애 예측 시스템 (A Prediction System for Server Performance Management)

  • 임복출;김순곤
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.684-690
    • /
    • 2018
  • 현재 및 향후 떠오르고 있는 빅 데이터 사회에서는 수집된 정보의 분석이 그 핵심 기술로 인식되고 있다. 또한 발생되는 데이터가 보다 다양하고 더욱 대용량화 되는 특징을 가지는 빅 데이터화가 가속될 미래의 진화된 지능화 사회에서는 예측 기술을 바탕으로 가치창출을 통한 최적화된 사회를 지향할 것으로 보인다. 지속적으로 사용되어질 IT시스템 운영 시 발생되는 다양한 데이터와 대량의 데이터에 대하여 빅 데이터 기반 기술을 활용하면 IT 시스템의 장애 방지와 안정적 운영이 가능할 것이다. 본 논문에서는 서버 성능 모니터링을 통한 데이터를 수집 분석하고자 빅 데이터 수집 분석 기술을 활용한 환경을 제안하였고, 또한 장애 예측을 위한 시계열 예측 모형을 도출하여 제안하였다. 빅 데이터를 처리하는 서버 성능 관리 측면에서, 본 논문에서 제안하는 이 모델을 통하여 서버 운영자는 사전 장애 예측을 통하여 IT 시스템의 안정적 운영이 가능할 것이다.

IoT 빅데이터 수집을 위한 IP기반 이기종 네트워크 인터페이스 연동 게이트웨이 (IP-Based Heterogeneous Network Interface Gateway for IoT Big Data Collection)

  • 강지헌
    • 한국정보통신학회논문지
    • /
    • 제23권2호
    • /
    • pp.173-178
    • /
    • 2019
  • 최근 스마트 홈, 스마트 보안, 스마트 팩토리 등 IoT 환경에서 생성, 수집, 계측되는 데이터의 종류 및 양이 증가하고 있다. IoT 서비스를 위한 요소기술에는 원하는 정보를 측정하기 위한 센서 장치, 해당 장치를 컨트롤할 수 있는 임베디드 소프트웨어, 측정된 데이터를 송수신할 수 있는 네트워크 프로토콜, 수집된 데이터를 분석/저장할 수 있는 빅데이터 및 인공지능 기술이 필수적이다. 본 논문에서는 다양한 IoT 장치에서 활용되고 있는 다양한 네트워크 프로토콜을 하나의 통합된 장치에서 처리할 수 있는 장치 개발에 초점을 맞추고 있으며, 이를 실현하기 위한 이기종 네트워크 인터페이스 IoT 게이트웨이를 제안한다. OpenWrt 기반의 유무선 공유기를 활용하였으며, 무선 센서 네트워크 프로토콜의 IP기반 통신을 위해 6LoWPAN 스택을 이용하여 BLE와 IEEE 802.15.4 통신 모듈을 연동하였고, 자체 개발한 파이썬 기반 미들웨어를 이용하여 Z-Wave, LoRa 통신 모듈에서 송수신 되는 패킷을 IP 패킷을 변환하여 전송하는 기능을 개발하였다. 개발된 IoT 게이트웨이가 IoT 빅데이터를 효과적으로 수집할 수 있는 장치로 활용될 수 있을 것으로 기대한다.

Keyword Analysis of Arboretums and Botanical Gardens Using Social Big Data

  • Shin, Hyun-Tak;Kim, Sang-Jun;Sung, Jung-Won
    • 인간식물환경학회지
    • /
    • 제23권2호
    • /
    • pp.233-243
    • /
    • 2020
  • This study collects social big data used in various fields in the past 9 years and explains the patterns of major keywords of the arboretums and botanical gardens to use as the basic data to establish operational strategies for future arboretums and botanical gardens. A total of 6,245,278 cases of data were collected: 4,250,583 from blogs (68.1%), 1,843,677 from online cafes (29.5%), and 151,018 from knowledge search engine (2.4%). As a result of refining valid data, 1,223,162 cases were selected for analysis. We came up with keywords through big data, and used big data program Textom to derive keywords of arboretums and botanical gardens using text mining analysis. As a result, we identified keywords such as 'travel', 'picnic', 'children', 'festival', 'experience', 'Garden of Morning Calm', 'program', 'recreation forest', 'healing', and 'museum'. As a result of keyword analysis, we found that keywords such as 'healing', 'tree', 'experience', 'garden', and 'Garden of Morning Calm' received high public interest. We conducted word cloud analysis by extracting keywords with high frequency in total 6,245,278 titles on social media. The results showed that arboretums and botanical gardens were perceived as spaces for relaxation and leisure such as 'travel', 'picnic' and 'recreation', and that people had high interest in educational aspects with keywords such as 'experience' and 'field trip'. The demand for rest and leisure space, education, and things to see and enjoy in arboretums and botanical gardens increased than in the past. Therefore, there must be differentiation and specialization strategies such as plant collection strategies, exhibition planning and programs in establishing future operation strategies.