• 제목/요약/키워드: The Arctic Ocean

검색결과 217건 처리시간 0.026초

Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

  • Lee, Seongsuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권4호
    • /
    • pp.305-311
    • /
    • 2016
  • The spatial size and variation of Arctic sea ice play an important role in Earth's climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

Icevaning control of an Arctic offshore vessel and its experimental validation

  • Kim, Young-Shik;Kim, Jinwhan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.208-222
    • /
    • 2021
  • Managing with the presence of sea ice is the primary challenge in the operation of floating platforms in the Arctic region. It is widely accepted that offshore structures operating in Arctic conditions need station-keeping methods as well as ice management by icebreakers. Dynamic Positioning (DP) is one of the station-keeping methods that can provide mobility and flexibility in marine operations. The presence of sea ice generates complex external forces and moments acting on the vessel, which need to be counteracted by the DP system. In this paper, an icevaning control algorithm is proposed that enables Arctic offshore vessels to perform DP operations. The proposed icevaning control enables each vessel to be oriented toward the direction of the mean environmental force induced by ice drifting so as to improve the operational safety and reduce the overall thruster power consumption by having minimum external disturbances naturally. A mathematical model of an Arctic offshore vessel is summarized for the development of the new icevaning control algorithm. To determine the icevaning action of the Arctic offshore vessel without any measurements and estimation of ice conditions including ice drift, task and null space are defined in the vessel model, and the control law is formulated in the task space. A backstepping technique is utilized to handle the nonlinearity of the Arctic offshore vessel's dynamic model, and the Lyapunov stability theory is applied to guarantee the stability of the proposed icevaning control algorithm. Experiments are conducted in the ice tank of the Korea Research Institute of Ships and Ocean Engineering to demonstrate the feasibility of the proposed approach.

북극권 스피츠베르겐 섬의 관속식물 국명 목록 (List of Korean Names for the Vascular Plants in Spitsbergen Island, in the Arctic Region)

  • 이규;한동욱;현진오;황영심;이유경;이은주
    • Ocean and Polar Research
    • /
    • 제34권1호
    • /
    • pp.101-110
    • /
    • 2012
  • In this study, we attempted to provide Korean names to the arctic vascular plants observed around the Dasan Korean Arctic Station and Longyearbyen in Spitsbergen Island, in the Arctic region. To obtain recognizable results, plants were named according to the following naming rules. (1) When Korean names already existed, those names were used. (2) When there was no Korean name for a plant species, a scientific name for the plant was translated into a Korean name. (3) If the meaning of the scientific name was unclear, an English common name was translated into Korean name. (4) If the scientific names had meaning to the Arctic inhabitation, the Korean names included the word 'Buk-geuk'. (5) If the distribution of the plant was limited to the Arctic area or the original species lived in the polar region, the Korean name included the word 'Buk-geuk'. (6) If the plant had no Korean generic name, a particular suffix '~a-jae-bi' was added to the closely related genus name of the plant species, or a new Korean genus name was used by translating a common English name. (7) If the same generic name had two or more Korean names, a generic name that better reflected the characteristics of the plant was selected. In this paper, we reported Korean names for 46 plants species belonging to 15 families and 28 genera. Eight plants had an existing Korean name and the other species were given new Korean names based on the criteria outlined above. We also made new Korean generic names for three genera, Braya, Micranthes and Cassiope.

전지구 해양·해빙예측시스템 NEMO-CICE/NEMOVAR의 북극 영역 해빙초기조건 특성 분석 (Analyzing the Characteristics of Sea Ice Initial Conditions for a Global Ocean and Sea Ice Prediction System, the NEMO-CICE/NEMOVAR over the Arctic Region)

  • 안중배;이수봉
    • 한국지구과학회지
    • /
    • 제36권1호
    • /
    • pp.82-89
    • /
    • 2015
  • 전지구 해양 해빙 예측시스템인 NEMO-CICE/NEMOVAR의 해빙 초기조건의 특성을 2013년 6월부터 2014년 5월까지 북극영역에 대하여 분석하였다. 이를 위하여 관측 자료와 재분석 자료를 모델의 초기조건과 비교하였다. 모델 초기조건은 관측에서 나타나는 해빙 면적과 해빙 두께의 월 변동을 잘 보이는 반면, 분석 기간 동안 관측과 재분석 자료보다 북극의 해빙 면적을 좁게, 해빙 두께를 얇게 나타내었다. 모델 초기조건의 북극 해빙 면적이 좁은 것은 해빙의 경계 지역에서 해빙 농도 초기조건이 약 20% 정도 재분석자료보다 낮기 때문이다. 또한 북극 평균 해빙 두께가 얇게 나타나는 이유는 연중 두꺼운 해빙이 유지되는 그린란드 및 북극 군도와 인접한 북극해 영역에서 모델의 초기조건이 약 60 cm 정도 얇기 때문이다.

국제법상 북극항로에서의 통항제도에 관한 연구 (A Study on the Legal Issues relating to Navigation through Arctic Passage)

  • 문규은
    • Strategy21
    • /
    • 통권43호
    • /
    • pp.29-55
    • /
    • 2018
  • Arctic sea ice has been retreating as a result of the global warming. Arctic sea ice extent for April 2018 averaged 13.71 million square kilometers. This figure shows far less sea ice compared to the average extent from 1981 to 2010. Meanwhile, 287 times of maritime transits through the Northwest Passage have been made during the 2017 and the first ship traversed the Northern Sea Route without the assistant of ice-breaker in August 2017. Commercialization of the Arctic Passage means significant economic and strategic advantages by shortening the distance. In this article, 'Arctic Passage' means Northern Sea Route along the Arctic coast of Russia and Northwest Passage crossing Canadian Arctic Ocean. As climate changes, the potential feasibility of the Arctic Passage has been drawing international attention. Since navigation in this area remains hazardous in some aspects, IMO adopted Polar Code to promote safe, secure and sustainable shipping through the Arctic Passage. Futhermore, Russia and Canada regulate foreign vessels over the maritime zones with the authority to unilaterally exercise jurisdiction pursuant to the Article 234 of UNCLOS. The dispute over the navigation regime of the arctic passage materialized with Russia proclaimed Dmitrii Laptev and Sannikov Straits as historically belong to U.S.S.R. in the mid 1960s and Canada declared that the waters of the passage are historic internal waters in 1973 for the first time. So as to support their claims, In 1985, Russia and Canada established straight baseline including Northern Sea Route and Northwest Passage. The United States has consistently protested that the Northern Sea Route and Northwest Passage are straits used for international navigation which are subject to the regime of transit passage. Firstly, it seems that Russia and Canada do not meet the basic requirements for acquiring a historic title. Secondly, since the Law of the Sea had adopted before the establishment of straight baseline over the Russian Arctic Archipelago and the Canadian Arctic Archipelago, Ships can exercise at least the right of innocent passage. Lastly, Northern Sea Route and Northwest Passage have fulfilled the both geographical and functional criteria pertaining to the strait used for international navigation under the international law. Especially, should the arctic passage become commercially viable, it can be expected to accumulate the functional criterion. Russia and Canada regulate the ships navigate in their maritime zones by adopting the higher degree of an environmental standard than generally accepted international rules and standard mainly under the Article 234 of UNCLOS. However, the Article 234 must be interpreted restrictively as this contains constraint on the freedom of navigation. Thus, it is reasonable to consider that the Article 234 is limited only to the EEZ of coastal states. Therefore, ships navigating in the Arctic Passage with the legal status of the territorial sea and the international straits under the law of the sea have the right of innocent passage and transit passage as usual.

Study on Influence of Ship Speed on Local Ice Loads on Bow of the IBRV ARAON

  • Kim, Tae-Wook;Choi, Kyungsik;Lee, Jong-Hyun;Lee, Tak-Kee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권1호
    • /
    • pp.25-35
    • /
    • 2015
  • This study presents the analysis of relationship between ship speed and local ice load on the Korean Icebreaker ARAON. The relationship curves were made from the data obtained at two areas: the Arctic and the Antarctic; and for two operation condition: the icebreaking condition in sea ice trial and general operation in ice covered sea. The strain data were converted to the equivalent stress value, and the influence of ship speed on the local ice load was analyzed and compared each other. These analysis results are useful in working on a statistically valid hull design approach.

IDENTIFICATION OF THERMODYNAMIC PARAMETERS OF ARCTIC SEA ICE AND NUMERICAL SIMULATION

  • Xiw, Chao;Feng, Enmin;Li, Zhijun;Peng, Lu
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.519-530
    • /
    • 2008
  • This paper studies the multi-domain coupled system of one dimensional Arctic temperature field and establishes identification model about the thermodynamic parameters of sea ice (heat storage capacity, density and conductivity) by the so-called output least-square estimate according to the temperature data acquired by a monitor buoy installed in the Arctic ocean. By the optimal control theory, the existence and dependability of weak solution and the identifiability of identification model have been given. Moreover, necessary optimality condition is proposed. Furthermore, the optimal algorithm for the identification model is constructed. By using the optimal thermodynamic parameters of Arctic sea ice, the numerical simulation is implemented, and the numerical results of temperature distribution of Arctic sea ice are demonstrated.

  • PDF

Study on icebreaking performance of the Korea icebreaker ARAON in the arctic sea

  • Kim, Hyun-Soo;Lee, Chun-Ju;Choi, Kyung-Sik;Kim, Moon-Chan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.208-215
    • /
    • 2011
  • A full-scale field trial in ice-covered sea is one of the most important tasks in the design of icebreaking ships. The first Korean icebreaking research vessel 'ARAON', after her delivery in late 2009, had a sea ice field trial in the Arctic Sea during July-August, 2010. This paper describes the test procedures and data analysis on the icebreaking performance of the IBRV ARAON. The data gathered from the icebreaking performance test in the Chukchi Sea and the Beaufort Sea during the Arctic voyage of ARAON includes the speed and engine power of the ship as well as sea ice thickness and strength data. The air temperature, wind speed and heading of the ship were also measured during each sea ice trial. The ARAON was designed to break 1 m thick level ice with a flexural strength of 630kPa at a continuous speed of 3knots. She is registered as a KR POLAR 10 class ship. The principal dimensions of ARAON are 110 m, 19 m and 6.8 m in length, breadth and draft respectively. She is equipped with four 3,500kW diesel-electric main engines and two Azipod type propulsion motors. Four sea ice trials were carried out to understand the relationship between the engine power and the ship speed, given the Arctic ice condition. The analysis shows that the ARAON was able to operate at 1.5knots in a 2.5m thick medium ice floe condition with the engine power of 5MW, and the speed reached 3.1 knots at the same ice floe condition when the power increased to 6.6MW. She showed a good performance of speed in medium ice floe compared to the speed performance in level ice. More detailed analysis is summarized in this paper.

A study on northern sea route navigation using ship handling simulation

  • Kim, Won Ouk;Youn, Dae Gwun;Lee, Young Chan;Han, Won Heui;Kim, Jong Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1044-1048
    • /
    • 2015
  • Recently, the viability of the Northern Sea Route has been receiving a remarkable amount of attention. Owing to global warming, glaciers in the Arctic Ocean have been melting rapidly, which has opened up navigation routes for ships with commercial as well as research purposes. At present, vessels can be economically operated along the Northern Sea Route four months of the year. However, studies have shown that the economical operating time may increase to six months by 2020 and year-round by 2030. Even though the conditions of the Northern Sea Route are extreme, the main reason for its use is that the route is shorter than the existing route using the Suez Canal, which provides an economic benefit. In addition, 25% of the world's oil reserves and 30% of its natural gas are stored in the coastal areas of the East Siberian Arctic region. Many factors are leading to the expectation of commercial navigation using the Northern Sea Route in the near future. To satisfy future demand, the International Maritime Organization established the Polar Code in order to ensure navigation safety in polar waters; this is expected to enter into force on January 1, 2017. According to the code, a ship needs to reduce its speed and analyze the ice for safe operation before entering into it. It is necessary to enter an ice field at a right angle to break the ice safely and efficiently. This study examined the operation along the course for safe navigation of the passage under several conditions. The results will provide guidelines for traffic officers who will operate ships in the Arctic Ocean.

Characteristics analysis of local ice load signals in ice-covered waters

  • Lee, Jong-Hyun;Kwon, Yong-Hyeon;Rim, Chae-Whan;Lee, Tak-Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권1호
    • /
    • pp.66-72
    • /
    • 2016
  • The aim of this paper is to investigate the characteristics of the signal of local ice load acting on side shell in the bow part due to ice broken by an icebreaker in ice-covered waters. The Korean icebreaking research vessel "ARAON" voyaged to the Arctic Ocean during the summer of 2010, and measurements of local ice load were carried out using several strain gauges. In this study, the time history of measured signals was analyzed and the characteristic values including rising time and half-decaying time were presented using non-dimensional parameters.