• 제목/요약/키워드: The Analysis

Search Result 311,081, Processing Time 0.164 seconds

An Experimental Study on Velocity Analysis by Automatic Velocity Analysis Algorithms in Layers Having Lateral Velocity Anomaly (수평적 속도변화대에서 자동속도분석 알고리즘을 이용한 속도분석 실험연구)

  • Yoon, Kwang Jin;Yang, Seung Jin
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.469-476
    • /
    • 1997
  • In the conventional velocity analysis, the peaks of a semblance panel are picked and the stacking velocities of the peaks are assumed as RMS velocities from which interval velocities are determined. This velocity analysis technique is correct only for horizontal homogeneous layes and incurs error in a layer whose velocity varies laterally. Tediousness of peak picking and error in velocity analysis can be reduced by automatic velocity analysis techniques. An automatic velocity analysis algorithm has been presented in order to improve these problems by considering the stacking velocity from the view point of interval velocity model and by relating the stacking velocity and the interval velocity with the traveltimes. In this paper, we apply the automatic velocity analysis method to simple models having lateral velocity anomaly to verify the effectivenesses and limits of this method. From the results of numerical experiments, we can determine the interval velocites without pickings of the stacking velocities in the one-dimensional velocity analysis and the general patterns of the laterally varying interval velocities appear in the two-dimensional case. However, the interval velocity and the depth of velocity anomaly determined by two-dimensional automatic velocity analysis are somewaht discrepant in those of the theoretical model.

  • PDF

The Analysis of Financial of Condition: the Features of the Application of Concentric Matric Modeless

  • Nikolaevna, Vyborova Elena
    • The Journal of Economics, Marketing and Management
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 2019
  • Purpose - The article views the theoretical basis of adaptation concentric matrix models in the analysis of the financial condition of the organization. Presented the elements counting procedures in the assessment of economic stability. Research design, data, and Methodology - Used the economic indicates in the concentric matrix models. The article views the specific using the concentric matrix models in the analysis of the financial condition of the organization. Results - The concentric matrix models can be adaptation to the analysis of financial conditions of organizations and to the comparative analysis. In the process of analysis of economic stability can be used "a field of efficiency". The classical variant of methods is transformed. The detailed assessment of influence of individual factors defined the additional methods. Conclusions - In the article the methods are demonstrated on the material of organization (Hyundai Elevator Co, China Communications Construction Company).

A Consideration on the Stability Analysis Method of Great Deep Tunnels (대심도 터널의 안정성 해석 방법에 대한 고찰)

  • 김주봉;안경철;김영준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.301-308
    • /
    • 1999
  • The construction of great deep tunnels has become an important part in tunnel construction especially in the mountain area. Therefore, it is necessary to establish the proper method of the stability analysis for great deep tunnels. In this paper presents the study result on the followings: (1) Evaluation of practical problem on the stability analysis of great deep tunnels. (2) Proposal of the proper on method for great deep tunnels analysis considering the depth of overburden. (3) Understanding of the ground behavior of the great deep tunnel through the sensitivity analysis and the parametric study.

  • PDF

Analysis on the Squeal Noise of Wheel Brake System for Tilting Train (틸팅차량용 휠 제동장치의 스퀼 소음 해석)

  • Cha, Jung-Kwon;Park, Yeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.98-105
    • /
    • 2010
  • Squeal, a kind of self-excited vibration, is generated by the friction between the disc and the friction materials. It occurs at the ending stage of the braking process, and radiates and audible frequency range of 1 kHz to 10 kHz. Squeal is generated from unstability because of the coupling between the translation and rotation of the system. This instability is caused by the follower force and follower force is normal component of the friction force. In this paper modal analysis of wheel brake system was performed in order to predict the squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. A finite element model of that brake system was made. Some parts of a real brake was selected and modeled. Modal analysis method performs analyses of each brake system component. Experimental modal analysis was performed for each brake components and experimental results were compared with analytical results from FEM. To predict the dynamic unstability of a whole system, the complex eigenvalue analysis for assembly modeling of components confirmed by modal analysis is performed. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. The complex eigenvalue analysis results compared with real train test.

Stochastic analysis for Real Rate Interest of Building Life Cycle Cost(LCC) with Monte-Carlo Simulation (몬테카를로 시뮬레이션을 이용한 건축물 생애주기비용(LCC)의 실질할인율에 대한 확률론적 분석)

  • Kim, Bum-Sic;Jung, Young-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.161-163
    • /
    • 2012
  • Recently on Value Engineering(VE) and Life Cycle Cost(LCC) social interests is increasing. The government Turn Key, BTL projects and public works projects, such as VE and LCC Analysis on the value and economic analysis is mandatory. And accordingly the VE and LCC analysis is underway for the various studies. However, there is a problem existing in the LCC analysis. Worth the cost varies according to the flow of time. However, the real interest rate during the LCC analysis of buildings in calculation time for interest rates and inflation are not considering the value of the flow. In other words, a few years using the average value of the deterministic analysis method has been adopted. These costs for the definitive analysis of the cost of an uncertain future, unforeseen changes resulting hazardous value. In this study of the last 15 years interest rates and inflation targeting by using Monte-Carlo Simulation is to perform probabilistic analysis. This potential to overcome uncertainties of the cost of building a more scientific and LCC Estimation of the probability value of the real interest rate is presented.

  • PDF

Development of Analysis Model and Sensitivity Analysis for High-Power Hydraulic Drifter Design (고출력 유압 드리프터 설계를 위한 해석모델 개발 및 민감도 분석)

  • Noh, Dae-Kyung;Lee, Dae-Hee;Yun, Joo-Seop;Lee, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.11-24
    • /
    • 2018
  • The purpose of the present study is to develop an analysis model to analyze the design parameter sensitivity of a high-power drifter suitable for implementation in Korean hydraulic drills. This study aims to establish a basis for the optimization of the impact performance and stability of a high-power drifter by investigating the effects of each design parameter on the impact performance via design parameter sensitivity analysis. To begin, an analysis model of drifter dynamics is developed, and the reliability of the analysis model is verified by comparing the analysis results to the experimental results. The drifter is then redesigned for compatibility with Korean hydraulic drills. Finally, design parameter sensitivity analysis of the redesigned drifter is conducted to determine the effects of the design parameters on the impact performance, and to extract the high-sensitivity parameters. SimulationX, which is multi-physics analysis software, is used to develop the analysis model, and EasyDesign is employed for design parameter sensitivity analysis.

Cost-Benefit Analysis of Electrical Safety Speed-call Service Using Electrical Fire Statistics Analysis and Outcome Analysis Logic Model (전기화재 통계 및 성과 분석 모델을 이용한 전기안전 긴급출동 고충처리 서비스의 비용 편익 분석)

  • Jeon, Jeong Chay;Yoo, Jae-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1943-1947
    • /
    • 2016
  • Korea Electrical Safety Cooperation(KESCO) have provided the electrical safety speed-call service from 2007 year. Purpose of the service is to reduce discomfort of electricity use and to prevent electrical accident like as electrical fire and shock accident by providing emergency treatment service on fault of the residential electrical facilities notified in the specific house like as a lower-income group and a social welfare facility. But efficiency and economic evaluation of the electrical safety speed-call service is impossible because analysis on the quantitative effect of the service is difficult. This paper presents cost-benefit analysis method and result of the electrical safety speed-call service. The presented cost-benefit analysis method has a two-step process: the first step is to measure quantitative electrical fire prevention effect of the service by using electrical accident statistics and developing outcome analysis logic model of the service effect, and the second step is to analysis cost-benefit(B/C)of the service by calculating quantitative benefit analysis on the measured quantitative electrical fire prevention effect. The results showed that cost-benefit(B/C)of the electrical safety speed-call service is over 4 after 2010 year.

Development of Customizing Program for Finite Element Analysis of Pressure Vessel (압력 용기 유한 요소 해석 프로그램 개발)

  • Jeon, Yoon-Cheol;Kim, Tae-Woan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.654-659
    • /
    • 2003
  • PVAP (Pressure Vessel Analysis Program V1.0) was developed by adopting the finite element analysis program ANSYS V6.0, and Microsoft Visual Basic V6.0 was also utilized for the interfacing and handling of input and output data during the analysis. PVAP offers the end user the ability to design and analyze vessels in strict accordance with ASME Section VIII, Division 2. More importantly, the user is not required to make any design decisions during the input of the vessel. PVAP consists of three analysis modules for the finite element analysis of the primary components of pressure vessel such as head, shell, nozzle, and skirt. In each module, finite element analysis can be performed automatically only if the end user gives the dimension of the vessel. Furthermore, the calculated results are compared and evaluated in accordance with the criteria given in ASME Boiler and Pressure Vessel Code, Section VIII, Division 2. In particular, heat transfer analysis and consecutive thermal stress analysis for the junction between skirt and head can be carried out automatically in the skirt-tohead module. Finally, report including the above results is created automatically in Microsoft Word format.

  • PDF

Structure and Vibration Analyses of Low Speed Contra-Rotating Fan Stage with High Aspect Ratio

  • Sah, Supen Kumar;Ghosh, Anup;Mistry, Chetan S
    • International Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • Contra-rotating fan is comprised of two rotors which are rotating in the opposite direction. The fan stages are named rotor-1 and rotor-2. Benefits from the use of contra rotation are in terms of better efficiency and improved thrust to weight ratio. Failure of contra-rotating fan stage blade in-service results in safety risks, repair costs, and revenue losses. This paper focuses on the vibration analysis and one way fluid-structure interaction of high aspect ratio, low speed contrarotating fan rotors. Modal analysis and modal pre-stress analysis of contra-rotating fan rotors were carried out to calculate the natural frequencies, One way fluid-structure interaction (FSI) was carried out where the computational analysis of the blades was performed using ANSYS CFX. The boundary conditions for CFD analysis were considered from the actual experimental velocity flow field at the inlet and pressure outlet. Based on the results obtained from the CFD analysis, the structural analysis such as deformation and Von-Misses stresses was carried out by using the finite element method (FEM) with ANSYS. The results provide necessary guidelines for the safe running of the contra-rotating fan. The analysis also will be helpful to understand the change of flow behavior due to a rotor deformation.

Stress Analysis of Pressure Vessels in Nuclear Power Plants (Part II : Stress Analysis of Tapered Cylinder in the Shell-Head Junction) (원자로압력용기의 응력해석 (제 2 보, 원데이퍼진 원통부의 응력해석))

  • 김천욱;주영우
    • Journal of the KSME
    • /
    • v.16 no.2
    • /
    • pp.100-107
    • /
    • 1976
  • Stress analysis of tapered cylinder of reactor vessels is investigated by means of the intersection method. The tapered cylinder is approximated into three models-average cylinder, conical frustum, and ring. The results are compared with those of the finite element method program and an experiment. In this paper, the following results are obtained: (1) the best aproximation has been obtained by the ring model analysis: (2) the intersection analysis of the tapered cylinder by the ring model shows a sufficient accuracy for the stress analysis of reactor vessels.

  • PDF