• 제목/요약/키워드: Texture information

검색결과 1,239건 처리시간 0.029초

Inter-layer Texture and Syntax Prediction for Scalable Video Coding

  • Lim, Woong;Choi, Hyomin;Nam, Junghak;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권6호
    • /
    • pp.422-433
    • /
    • 2015
  • In this paper, we demonstrate inter-layer prediction tools for scalable video coders. The proposed scalable coder is designed to support not only spatial, quality and temporal scalabilities, but also view scalability. In addition, we propose quad-tree inter-layer prediction tools to improve coding efficiency at enhancement layers. The proposed inter-layer prediction tools generate texture prediction signal with exploiting texture, syntaxes, and residual information from a reference layer. Furthermore, the tools can be used with inter and intra prediction blocks within a large coding unit. The proposed framework guarantees the rate distortion performance for a base layer because it does not have any compulsion such as constraint intra prediction. According to experiments, the framework supports the spatial scalable functionality with about 18.6%, 18.5% and 25.2% overhead bits against to the single layer coding. The proposed inter-layer prediction tool in multi-loop decoding design framework enables to achieve coding gains of 14.0%, 5.1%, and 12.1% in BD-Bitrate at the enhancement layer, compared to a single layer HEVC for all-intra, low-delay, and random access cases, respectively. For the single-loop decoding design, the proposed quad-tree inter-layer prediction can achieve 14.0%, 3.7%, and 9.8% bit saving.

Face Recognition Based on the Combination of Enhanced Local Texture Feature and DBN under Complex Illumination Conditions

  • Li, Chen;Zhao, Shuai;Xiao, Ke;Wang, Yanjie
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.191-204
    • /
    • 2018
  • To combat the adverse impact imposed by illumination variation in the face recognition process, an effective and feasible algorithm is proposed in this paper. Firstly, an enhanced local texture feature is presented by applying the central symmetric encode principle on the fused component images acquired from the wavelet decomposition. Then the proposed local texture features are combined with Deep Belief Network (DBN) to gain robust deep features of face images under severe illumination conditions. Abundant experiments with different test schemes are conducted on both CMU-PIE and Extended Yale-B databases which contain face images under various illumination condition. Compared with the DBN, LBP combined with DBN and CSLBP combined with DBN, our proposed method achieves the most satisfying recognition rate regardless of the database used, the test scheme adopted or the illumination condition encountered, especially for the face recognition under severe illumination variation.

Construction of Abalone Sensory Texture Evaluation System Based on BP Neural Network

  • Li, Xiaochen;Zhao, Yuyang;Li, Renjie;Zhang, Ning;Tao, Xueheng;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제22권7호
    • /
    • pp.790-803
    • /
    • 2019
  • The effects of different heat treatments on the sensory characteristics of abalones are studied in this study. In this paper, the sensory evaluation of abalone samples under different heat treatment conditions is carried out, and the evaluation results are analyzed. The three-dimensional (3D) scanning and reverse engineering are used in tooth modeling of the sensory evaluation of abalone samples under different heat treatment conditions. Besides, the chewing movement models are simplified into three modes, including the cutting mode, compressing mode and grinding mode, which are simulated using finite element simulation. The elastic modulus of the abalone samples is obtained through the compression testing using a texture analyzer to distinguish their material properties under different heat treatments and to obtain simulated mechanical parameters. Finally, taking the mechanical parameters of the finite element simulation of abalone chewing as input and sensory evaluation parameters as the output, BP neural network is established in which the sensory texture evaluation model of abalone samples is obtained. Through verification, the neural network prediction model can meet the requirements of food texture evaluation, with an average error of 9.12%.

TEXTURE ANALYSIS, IMAGE FUSION AND KOMPSAT-1

  • Kressler, F.P.;Kim, Y.S.;Steinnocher, K.T.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.792-797
    • /
    • 2002
  • In the following paper two algorithms, suitable for the analysis of panchromatic data as provided by KOMPSAT-1 will be presented. One is a texture analysis which will be used to create a settlement mask based on the variations of gray values. The other is a fusion algorithm which allows the combination of high resolution panchromatic data with medium resolution multispectral data. The procedure developed for this purpose uses the spatial information present in the high resolution image to spatially enhance the low resolution image, while keeping the distortion of the multispectral information to a minimum. This makes it possible to use the fusion results for standard multispecatral classification routines. The procedures presented here can be automated to large extent, making them suitable for a standard processing routine of satellite data.

  • PDF

Three Dimensional Shape Recovery from Blurred Images

  • Kyeongwan Roh;Kim, Choongwon;Lee, Gueesang;Kim, Soohyung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.799-802
    • /
    • 2000
  • There are many methods that extract the depth information based on the blurring ratio for object point in DFD(Depth from Defocus). However, it is often difficult to measure the depth of the object in two-dimensional images that was affected by various elements such as edges, textures, and etc. To solve the problem, new DFD method employing the texture classification with a neural network is proposed. This method extracts the feature of texture from an evaluation window in an image and classifies the texture class. Finally, It allocates the correspondent value for the blurring ratio. The experimental result shows that the method gives more accurate than the previous methods.

  • PDF

블록 동질성 분할을 이용한 화재불꽃 영역 추출에 관한 연구 (A Study on the Fire Flame Region Extraction Using Block Homogeneity Segmentation)

  • 박창민
    • 디지털산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.169-176
    • /
    • 2018
  • In this study, we propose a new Fire Flame Region Extraction using Block Homogeneity Segmentation method of the Fire Image with irregular texture and various colors. It is generally assumed that fire flame extraction plays a very important role. The Color Image with fire flame is divided into blocks and edge strength for each block is computed by using modified color histogram intersection method that has been developed to differentiate object boundaries from irregular texture boundaries effectively. The block homogeneity is designed to have the higher value in the center of region with the homeogenous colors or texture while to have lower value near region boundaries. The image represented by the block homogeneity is gray scale image and watershed transformation technique is used to generate closed boundary for each region. As the watershed transform generally results in over-segmentation, region merging based on common boundary strength is followed. The proposed method can be applied quickly and effectively to the initial response of fire.

Texture Analysis for Classifying Normal Tissue, Benign and Malignant Tumors from Breast Ultrasound Image

  • Eom, Sang-Hee;Ye, Soo-Young
    • Journal of information and communication convergence engineering
    • /
    • 제20권1호
    • /
    • pp.58-64
    • /
    • 2022
  • Breast ultrasonic reading is critical as a primary screening test for the early diagnosis of breast cancer. However, breast ultrasound examinations show significant differences in diagnosis based on the difference in image quality according to the ultrasonic equipment, experience, and proficiency of the examiner. Accordingly, studies are being actively conducted to analyze the texture characteristics of normal breast tissue, positive tumors, and malignant tumors using breast ultrasonography and to use them for computer-assisted diagnosis. In this study, breast ultrasonography was conducted to select 247 ultrasound images of 71 normal breast tissues, 87 fibroadenomas among benign tumors, and 89 malignant tumors. The selected images were calculated using a statistical method with 21 feature parameters extracted using the gray level co-occurrence matrix algorithm, and classified as normal breast tissue, benign tumor, and malignancy. In addition, we proposed five feature parameters that are available for computer-aided diagnosis of breast cancer classification. The average classification rate for normal breast tissue, benign tumors, and malignant tumors, using this feature parameter, was 82.8%.

방향성을 고려한 텍스처 합성을 학습하기 위한 인공신경망 (Artificial Neural Networks for Learning Directional Texture Synthesis)

  • 추연희;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.415-418
    • /
    • 2024
  • 본 논문에서는 텍스처 합성을 할 때 CNN을 사용하여 효율성을 높이고 방향을 고려하여 동적인 결과로 품질을 개선시킬 수 있는 방법을 제안한다. 자유로운 회전 각도로 방향성을 고려하여 동적인 결과물을 생성할 수 있도록 하였으며, 기존 접근법인 사각형 형태의 마스크 블록이 아닌 다양한 회전 각도를 고려하여 학습을 했기 때문에 텍스처 합성 과정에서 방향성 특징을 좀 더 잘 표현할 수 있다.

  • PDF

Texture Based Automated Segmentation of Skin Lesions using Echo State Neural Networks

  • Khan, Z. Faizal;Ganapathi, Nalinipriya
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.436-442
    • /
    • 2017
  • A novel method of Skin lesion segmentation based on the combination of Texture and Neural Network is proposed in this paper. This paper combines the textures of different pixels in the skin images in order to increase the performance of lesion segmentation. For segmenting skin lesions, a two-step process is done. First, automatic border detection is performed to separate the lesion from the background skin. This begins by identifying the features that represent the lesion border clearly by the process of Texture analysis. In the second step, the obtained features are given as input towards the Recurrent Echo state neural networks in order to obtain the segmented skin lesion region. The proposed algorithm is trained and tested for 862 skin lesion images in order to evaluate the accuracy of segmentation. Overall accuracy of the proposed method is compared with existing algorithms. An average accuracy of 98.8% for segmenting skin lesion images has been obtained.

Face Representation and Face Recognition using Optimized Local Ternary Patterns (OLTP)

  • Raja, G. Madasamy;Sadasivam, V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.402-410
    • /
    • 2017
  • For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.