• Title/Summary/Keyword: Texture image

Search Result 1,151, Processing Time 0.022 seconds

Design of an observer-based decentralized fuzzy controller for discrete-time interconnected fuzzy systems (얼굴영상과 예측한 열 적외선 텍스처의 융합에 의한 얼굴 인식)

  • Kong, Seong G.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.437-443
    • /
    • 2015
  • This paper presents face recognition based on the fusion of visible image and thermal infrared (IR) texture estimated from the face image in the visible spectrum. The proposed face recognition scheme uses a multi- layer neural network to estimate thermal texture from visible imagery. In the training process, a set of visible and thermal IR image pairs are used to determine the parameters of the neural network to learn a complex mapping from a visible image to its thermal texture in the low-dimensional feature space. The trained neural network estimates the principal components of the thermal texture corresponding to the input visible image. Extensive experiments on face recognition were performed using two popular face recognition algorithms, Eigenfaces and Fisherfaces for NIST/Equinox database for benchmarking. The fusion of visible image and thermal IR texture demonstrated improved face recognition accuracies over conventional face recognition in terms of receiver operating characteristics (ROC) as well as first matching performances.

Perceptual Fusion of Infrared and Visible Image through Variational Multiscale with Guide Filtering

  • Feng, Xin;Hu, Kaiqun
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1296-1305
    • /
    • 2019
  • To solve the problem of poor noise suppression capability and frequent loss of edge contour and detailed information in current fusion methods, an infrared and visible light image fusion method based on variational multiscale decomposition is proposed. Firstly, the fused images are separately processed through variational multiscale decomposition to obtain texture components and structural components. The method of guided filter is used to carry out the fusion of the texture components of the fused image. In the structural component fusion, a method is proposed to measure the fused weights with phase consistency, sharpness, and brightness comprehensive information. Finally, the texture components of the two images are fused. The structure components are added to obtain the final fused image. The experimental results show that the proposed method displays very good noise robustness, and it also helps realize better fusion quality.

Romantic Image Classification by Clothing Design Elements (의복의 조형요소에 따른 로맨틱이미지 분류)

  • Lee, Kyung-Lim;Park, Sook-Hyun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.3
    • /
    • pp.494-504
    • /
    • 2008
  • The purpose of this study was to classify the romantic image by clothing design elements. This research was done by survey method with 20 kinds of romantic image photos selected in fashion magazines. The data was analyzed by Reliability Analysis, Factor Analysis, ANOVA, Duncan's test and MDS. The results of this study are as follows: 1. Romantic image was classified by 4 factors. Those were sexy-romantic, retro-romantic, natural-romantic and cute-romantic images. 2. Sexy-romantic image was well-expressed by fitted silhouette, achromatic and achromatic color coordinations and see-through texture. Retro-romantic image was well-expressed by X silhouette, achromatic and achromatic color coordinations and see-through or combination texture. Natural-romantic image was well-expressed by A silhouette and chromatic and achromatic color coordinations. Cute-romantic image was well-expressed by A silhouette and soft or combination(silky and soft) texture. 3. Romantic image was positioned into mostly traditional or artificial on image scale.

An approach for improving the performance of the Content-Based Image Retrieval (CBIR)

  • Jeong, Inseong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.665-672
    • /
    • 2012
  • Amid rapidly increasing imagery inputs and their volume in a remote sensing imagery database, Content-Based Image Retrieval (CBIR) is an effective tool to search for an image feature or image content of interest a user wants to retrieve. It seeks to capture salient features from a 'query' image, and then to locate other instances of image region having similar features elsewhere in the image database. For a CBIR approach that uses texture as a primary feature primitive, designing a texture descriptor to better represent image contents is a key to improve CBIR results. For this purpose, an extended feature vector combining the Gabor filter and co-occurrence histogram method is suggested and evaluated for quantitywise and qualitywise retrieval performance criterion. For the better CBIR performance, assessing similarity between high dimensional feature vectors is also a challenging issue. Therefore a number of distance metrics (i.e. L1 and L2 norm) is tried to measure closeness between two feature vectors, and its impact on retrieval result is analyzed. In this paper, experimental results are presented with several CBIR samples. The current results show that 1) the overall retrieval quantity and quality is improved by combining two types of feature vectors, 2) some feature is better retrieved by a specific feature vector, and 3) retrieval result quality (i.e. ranking of retrieved image tiles) is sensitive to an adopted similarity metric when the extended feature vector is employed.

Content-based Image Retrieval using Spatial-Color and Gabor Texture on A Mobile Device (모바일 디바이스상에서 공간-칼라와 가버 질감을 이용한 내용-기반 영상 검색)

  • Lee, Yong-Hwan;Lee, June-Hwan;Cho, Han-Jin;Kwon, Oh-Kin;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • Mobile image retrieval is one of the most exciting and fastest growing research fields in the area of multimedia technology. As the amount of digital contents continues to grow users are experiencing increasing difficulty in finding specific images in their image libraries. This paper proposes a new efficient and effective mobile image retrieval method that applies a weighted combination of color and texture utilizing spatial-color and second order statistics. The system for mobile image searches runs in real-time on an iPhone and can easily be used to find a specific image. To evaluate the performance of the new method, we assessed the iPhone simulations performance in terms of average precision and recall using several image databases and compare the results with those obtained using existing methods. Experimental trials revealed that the proposed descriptor exhibited a significant improvement of over 13% in retrieval effectiveness, compared to the best of the other descriptors.

A Study on the Visual Evaluation according to Clothing Stimuli and the Method of Presentation (의복자재물(衣服刺載物)과 제시방법(提示方法)에 따른 시각적(視覺的) 평가(評價))

  • Kim, Hee Jung;Lee, Kyoung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.3
    • /
    • pp.428-435
    • /
    • 1993
  • The purpose of this study was to investigate the difference of the visual evaluation about clothing texture, the state of wearing and the method of presentation. The data from observation were analyzed by factor analysis, t-test, ANOVA, Scheffe test and MCA. The results of this study were as follows ; 1. 17 pairs of discriptors used for the visual evaluation of clothing stimuli were found to include four factor dimensions(total variance 65.6%) ; Attention, Appearance, Texture, Maturity. 2. For the image of clothing texture, there were significant differences in the attention and texture. 3. For the image of the state of wearing, there were significant differences in the attention and appearance. 4. For the image of the method of presentation, there were significant differences in the clothing texture and the state of wearing. 5. According to clothing texture, the state of wearing and the method of presentation, the interaction effect was significant in the attention and appearance.

  • PDF

Texture Images Segmentation by Combination of Moment & Homogeneity Features (모멘트와 동차성 특징 결합에 의한 텍스쳐 영상 분할)

  • Mo, Moon-Jung;Lim, Jong-Seok;Lee, Woo-Beom;Kim, Wook-Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11
    • /
    • pp.3592-3602
    • /
    • 2000
  • Image processing consist of image analysis and classification. The one is extracting of feature value in the image. The other is segimentationof image that have same properiv. A novel approach for the analysis and classification of tezture images based on statistical texture prunitive estraction are proposed. In this approach, feature vector extracting is based on stalisucal method using apatial dependence of grey level and use general lexture proerty. In is advantageous that not effiected on structure and type of lexture. These components describe the amount of roughness and softness of texture images Two leatures. Moment and Homogeneity, are componted from GLCM(gray level co-occurrence matrices) of the lexture promitive to charactenize statisical properties of the image. We show the successful experimental results by considerationof these two components fro the analysis and classificationto regular and irregular texture images.

  • PDF

Color & Texture Attribute Classification System of Fashion Item Image for Standardizing Learning Data in Fashion AI (패션 AI의 학습 데이터 표준화를 위한 패션 아이템 이미지의 색채와 소재 속성 분류 체계)

  • Park, Nanghee;Choi, Yoonmi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.2
    • /
    • pp.354-368
    • /
    • 2020
  • Accurate and versatile image data-sets are essential for fashion AI research and AI-based fashion businesses based on a systematic attribute classification system. This study constructs a color and texture attribute hierarchical classification system by collecting fashion item images and analyzing the metadata of fashion items described by consumers. Essential dimensions to explain color and texture attributes were extracted; in addition, attribute values for each dimension were constructed based on metadata and previous studies. This hierarchical classification system satisfies consistency, exclusiveness, inclusiveness, and flexibility. The image tagging to confirm the usefulness of the proposed classification system indicated that the contents of attributes of the same image differ depending on the annotator that require a clear standard for distinguishing differences between the properties. This classification system will improve the reliability of the training data for machine learning, by providing standardized criteria for tasks such as tagging and annotating of fashion items.

An Optimized CLBP Descriptor Based on a Scalable Block Size for Texture Classification

  • Li, Jianjun;Fan, Susu;Wang, Zhihui;Li, Haojie;Chang, Chin-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.288-301
    • /
    • 2017
  • In this paper, we propose an optimized algorithm for texture classification by computing a completed modeling of the local binary pattern (CLBP) instead of the traditional LBP of a scalable block size in an image. First, we show that the CLBP descriptor is a better representative than LBP by extracting more information from an image. Second, the CLBP features of scalable block size of an image has an adaptive capability in representing both gross and detailed features of an image and thus it is suitable for image texture classification. This paper successfully implements a machine learning scheme by applying the CLBP features of a scalable size to the Support Vector Machine (SVM) classifier. The proposed scheme has been evaluated on Outex and CUReT databases, and the evaluation result shows that the proposed approach achieves an improved recognition rate compared to the previous research results.

A Method of Color Image Segmentation Based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) Using Compactness of Superpixels and Texture Information (슈퍼픽셀의 밀집도 및 텍스처정보를 이용한 DBSCAN기반 칼라영상분할)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.89-97
    • /
    • 2015
  • In this paper, a method of color image segmentation based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) using compactness of superpixels and texture information is presented. The DBSCAN algorithm can generate clusters in large data sets by looking at the local density of data samples, using only two input parameters which called minimum number of data and distance of neighborhood data. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. Each superpixel is consist of pixels with similar features such as luminance, color, textures etc. Superpixels are more efficient than pixels in case of large scale image processing. In this paper, superpixels are generated by SLIC(simple linear iterative clustering) as known popular. Superpixel characteristics are described by compactness, uniformity, boundary precision and recall. The compactness is important features to depict superpixel characteristics. Each superpixel is represented by Lab color spaces, compactness and texture information. DBSCAN clustering method applied to these feature spaces to segment a color image. To evaluate the performance of the proposed method, computer simulation is carried out to several outdoor images. The experimental results show that the proposed algorithm can provide good segmentation results on various images.