• 제목/요약/키워드: Texture Image

검색결과 1,150건 처리시간 0.028초

MPEG-7 Homogeneous Texture Descriptor

  • Ro, Yong-Man;Kim, Mun-Churl;Kang, Ho-Kyung;Manjunath, B.S.;Kim, Jin-Woong
    • ETRI Journal
    • /
    • 제23권2호
    • /
    • pp.41-51
    • /
    • 2001
  • MPEG-7 standardization work has started with the aims of providing fundamental tools for describing multimedia contents. MPEG-7 defines the syntax and semantics of descriptors and description schemes so that they may be used as fundamental tools for multimedia content description. In this paper, we introduce a texture based image description and retrieval method, which is adopted as the homogeneous texture descriptor in the visual part of the MPEG-7 final committee draft. The current MPEG-7 homogeneous texture descriptor consists of the mean, the standard deviation value of an image, energy, and energy deviation values of Fourier transform of the image. These are extracted from partitioned frequency channels based on the human visual system (HVS). For reliable extraction of the texture descriptor, Radon transformation is employed. This is suitable for HVS behavior. We also introduce various matching methods; for example, intensity-invariant, rotation-invariant and/or scale-invariant matching. This technique retrieves relevant texture images when the user gives a querying texture image. In order to show the promising performance of the texture descriptor, we take the experimental results with the MPEG-7 test sets. Experimental results show that the MPEG-7 texture descriptor gives an efficient and effective retrieval rate. Furthermore, it gives fast feature extraction time for constructing the texture descriptor.

  • PDF

삼차원 메쉬 모델의 텍스처 좌표 부호화를 위한 텍스처 영상의 재배열 방법 (Texture Image Rearrangement for Texture Coordinate Coding of Three-dimensional Mesh Models)

  • 김성열;호요성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.963-966
    • /
    • 2005
  • Previous works related to texture coordinate coding of the three-dimensional(3-D) mesh models employed the same predictor as the geometry coder. However, discontinuities in the texture coordinates cause unreasonable prediction. Especially, discontinuities become more serious for the 3-D mesh model with a non-atlas texture image. In this paper, we propose a new coding scheme to remove discontinuities in the texture coordinates by reallocating texture segments according to a coding order. Experiment results show that the proposed coding scheme outperforms the MPEG-4 3DMC standard in terms of compression efficiency. The proposed scheme not only overcome the discontinuity problem by regenerating a texture image, but also improve coding efficiency of texture coordinate compression.

  • PDF

웨이브릿 기반 텍스처 융합 영상을 이용한 위성영상 자료의 분류 정확도 향상 연구 (The Classification Accuracy Improvement of Satellite Imagery Using Wavelet Based Texture Fusion Image)

  • 황화정;이기원;권병두;류희영
    • 대한원격탐사학회지
    • /
    • 제23권2호
    • /
    • pp.103-111
    • /
    • 2007
  • 지금까지 위성영상 정보 처리 분야에서는 분광정보를 이용한 영상분석과 시각적 해석 및 자동 분류에 대한 연구가 주로 수행되었으나, 최근에는 영상자료에서 시각적으로 나타나지 않는 특성이나 공간정보의 추출을 위한 여러 시도가 이루어지고 있다. 본 연구에서는 영상정보의 특성 추출기법인 텍스처 영상 생성기법과 웨이브릿 변환을 연계하여 웨이브릿 기반 텍스처 융합 영상에 대한 연구를 수행하였다. 또한 이러한 영상이 분류 정확도에 어떻게 기여하는 가를 분석하기 위한 적용 사례로 도심지 공간분석과 칼데라 주변지역의 지질학적 구조분석을 수행하였다 영상 분석 시 공간정보 활용을 위한 텍스처 영상 생성기법과 웨이브릿 기반 텍스처 융합 영상 생성기법을 사용하면 원본영상만을 사용하였을 때보다 높은 분류정확도를 보였다. 고해상도 영상을 사용한 도심지의 경우 원본영상에 텍스처영상과 웨이브릿 기반 텍스처 융합 영상을 모두 활용한 경우의 분류정확도가 가장 높은 값을 보였다. 이는 상세화소의 변화가 매우 중요한 도심지의 특성상, 세밀한 공간정보가 최대로 활용되었기 때문으로 해석되어진다. 또한 중 저해상도 영상을 사용한 지질학적 구조분석의 경우 원본영상에 텍스처 영상만을 활용한 경우가 가장 높은 분류정확도를 보였다. 이는 칼데라를 중심으로 한 비교적 크기가 큰 지질학적 구조 분석 시 고도변화와 지열분포 등의 정보가 적당히 단순화 될 필요가 있었기 때문인 것으로 해석된다. 따라서 이러한 기법들을 실제 연구에 적용하기 위해서는 연구의 목적과 위성영상의 해상도 등의 정보를 모두 고려하여 적절한 기법을 잘 적용하는 것이 중요하다.

PDE-based Image Interpolators

  • Cha, Young-Joon;Kim, Seong-Jai
    • 한국통신학회논문지
    • /
    • 제35권12C호
    • /
    • pp.1010-1019
    • /
    • 2010
  • This article presents a PDE-based interpolation algorithm to effectively reproduce high resolution imagery. Conventional PDE-based interpolation methods can produce sharp edges without checkerboard effects; however, they are not interpolators but approximators and tend to weaken fine structures. In order to overcome the drawback, a texture enhancement method is suggested as a post-process of PDE-based interpolation methods. The new method rectifies the image by simply incorporating the bilinear interpolation of the weakened texture components and therefore makes the resulting algorithm an interpolator. It has been numerically verified that the new algorithm, called the PDE-based image interpolator (PII), restores sharp edges and enhances texture components satisfactorily. PII outperforms the PDE-based skeleton-texture decomposition (STD) approach. Various numerical examples are shown to verify the claim.

Texture Mapping을 고려한 Rang Image의 3차원 형상 간략화 (3D Mesh Simplification from Range Image Considering Texture Mapping)

  • 공창환;김창헌
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제3권1호
    • /
    • pp.23-28
    • /
    • 1997
  • 본 논문은 range map과 texture map이 포함된 range image를 삼각형 메쉬로 된 3차원 형상으로 복원하고, 이 삼각형 메쉬를 기하학적 축소 알고리즘을 적용하여 간략화하는 방법에 대하여 기술한다. 그리고 이 논문에는 복원된 3차원 모델에 texture mapping이 가능하고 간략한 정도를 사용자가 쉽게 결정할 수 있으며, 실시간 multiple level-of-detail에 적용 가능한 빠른 속도의 간략화 방법을 제시한다. 구현한 방법을 국보급 문화재를 스캐닝한 실험 데이터에 적용하여 그 유효성을 입증한다.

  • PDF

3D 가상도시 구축을 위한 건물 텍스쳐 이미지의 왜곡보정 (Adjustment of texture image for construction of a 3D virtual city)

  • 김성수;김병국
    • 대한공간정보학회지
    • /
    • 제10권2호
    • /
    • pp.49-56
    • /
    • 2002
  • 3D 가상도시 구축에 있어 사용자로 하여금 공간 객체 중심으로 지형 지물을 인식할 수 있게 해 줄 수 있는 요소로서 Texture Image를 들 수 있다. 본 연구에서는 디지틀 카메라를 통하여 건물 측면 Texture Image를 획득하고 이렇게 획득한 이미지가 가지고 있는 왜곡을 2D Projective Transformation방법을 사용하여 보정하였다. 보정이 끝난 Texture Image는 OpenGL을 이용하여 3D 건물 모델에 Mapping을 실시하였다. 본 연구를 통해 개발한 응용 프로그램은 가상도시를 구축하는 과정상에 자동화된 방법을 제공할 수 있다.

  • PDF

모 혼방직물의 역학적 특성과 태 및 소재 정보에 따른 남성 정장용 소재의 질감이미지와 선호도 평가 (Evaluation of Texture Image and Preference to Men's Suit Fabrics according to Mechanical Properties, Hand and Fabric Information of Wool Blended Fabrics)

  • 김희숙;나미희
    • 한국생활과학회지
    • /
    • 제23권2호
    • /
    • pp.317-328
    • /
    • 2014
  • In this study, differences of texture image and preference for men's suit fabrics according to mechanical properties, hand and fabric information were investigated. 55 subjects evaluated texture image and preference of 12 kinds of wool blended fabrics. For statistical analysis, t-test and pearson correlation coefficients were used. The results were as follows: Most of mechanical properties effected on texture images, and bending property and shearing property were effected on tactile preference and purchasing preference. For hand, objective hand values showed correlations with subjective texture images and preferences, but THV had almost no correlations. In sensory images according to presence of fabric information, fabrics were evaluated thinner, lighter, more pliable and smooth by cognition of wool blending ratio. For sensibility images, fabrics were evaluated more refined, intellectual, dignified and less practicable after recognize of wool blending ratio. In preferences, tactile preference was increased and purchasing preference was decreased after recognize fabric information. Therefore, significant differences of texture image and preference were observed according to presence of fabric information.

Android malicious code Classification using Deep Belief Network

  • Shiqi, Luo;Shengwei, Tian;Long, Yu;Jiong, Yu;Hua, Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.454-475
    • /
    • 2018
  • This paper presents a novel Android malware classification model planned to classify and categorize Android malicious code at Drebin dataset. The amount of malicious mobile application targeting Android based smartphones has increased rapidly. In this paper, Restricted Boltzmann Machine and Deep Belief Network are used to classify malware into families of Android application. A texture-fingerprint based approach is proposed to extract or detect the feature of malware content. A malware has a unique "image texture" in feature spatial relations. The method uses information on texture image extracted from malicious or benign code, which are mapped to uncompressed gray-scale according to the texture image-based approach. By studying and extracting the implicit features of the API call from a large number of training samples, we get the original dynamic activity features sets. In order to improve the accuracy of classification algorithm on the features selection, on the basis of which, it combines the implicit features of the texture image and API call in malicious code, to train Restricted Boltzmann Machine and Back Propagation. In an evaluation with different malware and benign samples, the experimental results suggest that the usability of this method---using Deep Belief Network to classify Android malware by their texture images and API calls, it detects more than 94% of the malware with few false alarms. Which is higher than shallow machine learning algorithm clearly.

모섬유의 혼방비율과 직물 특성에 따른 남성 정장용 소재의 질감이미지와 선호도 평가 (Evaluation of the Texture Image and Preference according to Wool Fiber Blending Ratios and the Characteristics of Men's Suit Fabrics)

  • 김희숙;나미희
    • 한국생활과학회지
    • /
    • 제20권2호
    • /
    • pp.413-426
    • /
    • 2011
  • This research was designed to compare the subjective evaluation of texture image and preference according to fiber blending ratio of men's suit fabrics. 110 subjects evaluated the texture image and preference of various fabrics. For statistical analysis, factor analysis, MDS, pearson correlation and ANOVA were used. The results were as follows: Sensory image factors of suit fabrics were 'smoothness', 'bulkiness', 'stiffness', 'elasticity', 'moistness' and 'weight sensation'. Sensibility image factors were 'classic', 'practical', 'characteristic' and 'sophisticated'. 'Bulkiness' and 'elasticity' sensory images showed high correlations with sensibility images. Fabrics with high wool blending ratio showed as 'classic' and 'sophisticated', 'bulkiness' and 'elasticity' texture images and fabrics with low wool blending ratio showed texture images of 'characteristic', 'surface character', 'stiffness', 'moistness' and 'weight sensation'. Wool fiber blending ratio affected on the purchase preference and tactile preference. Using regression analysis, it was shown that sensibility images had more of an effect on preference than sensory images. The thickness and pattern type showed positive effects and fiber blending ratio showed negative effects on the preference.

결함검출을 위한 실험적 연구

  • 목종수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.24-29
    • /
    • 1996
  • The seniconductor, which is precision product, requires many inspection processes. The surface conditions of the semiconductor chip effect on the functions of the semiconductors. The defects of the chip surface is crack or void. Because general inspection method requires many inspection processes, the inspection system which searches immediately and preciselythe defects of the semiconductor chip surface. We propose the inspection method by using the computer vision system. This study presents an image processing algorithm for inspecting the surface defects(crack, void)of the semiconductor test samples. The proposed image processing algorithm aims to reduce inspection time, and to analyze those experienced operator. This paper regards the chip surface as random texture, and deals with the image modeling of randon texture image for searching the surface defects. For texture modeling, we consider the relation of a pixel and neighborhood pixels as noncasul model and extract the statistical characteristics from the radom texture field by using the 2D AR model(Aut oregressive). This paper regards on image as the output of linear system, and considers the fidelity or intelligibility criteria for measuring the quality of an image or the performance of the processing techinque. This study utilizes the variance of prediction error which is computed by substituting the gary level of pixel of another texture field into the two dimensional AR(autoregressive model)model fitted to the texture field, estimate the parameter us-ing the PAA(parameter adaptation algorithm) and design the defect detection filter. Later, we next try to study the defect detection search algorithm.

  • PDF