• 제목/요약/키워드: Texture Evolution

검색결과 142건 처리시간 0.018초

Hydrogen Evolution Ability of Selected Pure Metals and Galvanic Corrosion Behavior between the Metals and Magnesium

  • Luo, Zhen;Song, Kaili;Li, Guijuan;Yang, Lei
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.323-329
    • /
    • 2020
  • The cathodic hydrogen evolution ability of different pure metals and their long term galvanic corrosion behavior with pure Mg were investigated. The hydrogen evolution ability of pure Ti, Al, Sn and Zr is weak, while that of Fe, W, Cr, and Co is very strong. Initial polarization test could not completely reveal the cathodic behavior of the tested metals during long term corrosion. The cathodic hydrogen evolution ability may vary significantly in the long term galvanic tests for different metals, especially for Al whose cathodic current density reduced to 1/50 of the initial value. The anodic polarization shows that Al and Sn as alloying elements are supposed to provide relatively good passive effect for Mg alloy, while Ag can provide a slight passive effect and Zn has little passive effect.

압연조건에 따른 변형률 상태의 변화와 집합조직의 형성 (Evolution of Strain States and Textures During Rolling with Various Conditions)

  • 강형구;허무영
    • 소성∙가공
    • /
    • 제15권7호
    • /
    • pp.479-484
    • /
    • 2006
  • The evolution of strain states and textures during rolling with various conditions was investigated by finite element method (FEM) simulations and measurements of rolling textures. Symmetrical rolling with a high friction gives rise to a strong variation of shear strains in rolled sample leading to the formation of texture gradients throughout the thickness layers. A small variation of shear strains during rolling with a well lubrication condition leads to the formation of a fairly homogeneous rolling texture throughout the sheet thickness. During asymmetrical rolling, a proper control of rolling parameters provides the evolution of a fairly homogeneous shear texture throughout the whole sheet thickness.

430 스테인리스강의 미세조직 및 집합조직 형성에 미치는 냉간압연 및 소둔조건의 영향 (Effect of Cold Rolling and Annealing Conditions on the Microstructure and Texture Evolution)

  • 김광육
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.202-205
    • /
    • 2000
  • The effect of two step cold rolling and intermediate annealing conditions on the microstructure and texture evolution in type 430 stainless steel has been investigated tin order to improve ridging characteristic and deep drawability. The rolling and recrystallization textures were examined by orientation distributionfunction(ODF) and electron backscattered diffraction(EBSD). The observation showed that the intensity of ${\gamma}$-fiber was increased with two-step cold rolling process and so ridging characteristic and deep drawability were considerably improved. The relation between these properties an texture evolution has been discussed.

  • PDF

집합조직의 발전을 반영하는 다결정재의 성형공정해석 (Finite Element Analysis for Forming Process of Polycrystalline Metal Including Texture Development)

  • 김응주;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 춘계학술대회논문
    • /
    • pp.62-72
    • /
    • 1996
  • A process model is formulated considering the effect of crystallographic testure developed in forming process. The deformation induced plastic anisotropy can be predicted by capturing the evolution of texture during large deformatin in the poly crystaline aggregate. The anisotropic stiffness matrix for the aggregate is derived and implemented in Dulerian finite element code. As an application , the evolution of texture in rolling, drawing and extrusion processes are simulated . The numerical results show good agreement with reported experimental textures.

  • PDF

LF 강의 집합조직 발달에 미치는 중간열처리의 영향 (The Effect of Intermediate Annealing on the Evolution of Texture in I.F. Steel)

  • 김현철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.112-115
    • /
    • 1999
  • The effect of intermediate annealing on the texture evolution in I.f steel was investigated by using X-ray texture measurement. After The sample was cold rolled to 80% reduction intermediate annealing was introduced to preform ${\gamma}$-fiber orientation grains in deformed matrix. The annealing time was varied between 30 and 3600 sec, These samples were cold rolled to 90% reduction and full annealed. By intermediate annealing final full annealed samples had very homogeneous ${\gamma}$-fiber orientation resulting in good deep drawability.

  • PDF

알루미늄 판재에서 두께층에 따른 변형율 상태와 집합조직의 발달에 미치는 다양한 공정의 영향 (Effect of various processes on the evolution of through thickness strain states and textures in aluminum sheets)

  • 나정준;강형구;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.87-90
    • /
    • 2007
  • The evolution of texture and microstructure was tracked for a number of differently cold rolled aluminum sheet and through-thickness layers which were differentiated by different strain states upon preceding deformation. The results substantiate a correlation of deformation texture with the amount of shear applied during cold rolling.

  • PDF

AA1050 알루미늄 합금의 열간 압연 시 전단집합조직의 형성 (Evolution of shear texture during hot rolling of AA1050 aluminum sheet.)

  • 강춘구;김현철;허무영;이종석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.222-225
    • /
    • 2006
  • The effect of lubrication on the development of textures and Microstructure was studied by different lubricating condition during hot rolling of AA1050 aluminum alloy. Hot rolling without lubrication led to the evolution of the pronounced through-thickness texture gradients, whereas hot rolling with lubrication gave rise to the formation of uniform rolling texture in the whole thickness layer. The variation of texture and microstructure according to hot rolling condition are investigated by X-ray diffractometer (XRD) and Electron Back-Scattered Diffraction (EBSD). The experimental results were discussed base on the finite element method (FEM) simulation. FEM calculation reveals that a larger friction between roll and sheet causes the deviated strain state from a plane strain leading to the formation of shear textures in the thickness layers close to the surface.

  • PDF

결정 소성학을 이용한 반구 박판 성형공정 전산모사 (Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity)

  • 심정길;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.282-284
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By observing the texture evolution of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between crystal plasticity and experiment shows the verification of the crystal-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

  • PDF

결정 소성학과 강소성 유한요소해석을 연계한 ECAE 공정에서의 변형 집합 조직 발달에 대한 연구 (Prediction of Texture Evolution in Equal Channel Angular Extrusion (ECAE) Using Rate-Independent Crystal Plasticity with Rigid-Plastic Finite Element Method)

  • 김경진;윤정환;양동열
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.937-944
    • /
    • 2015
  • Recently, the change of mechanical properties and microstructural evolution during severe plastic deformation (SPD), such as Equal Channel Angular Extrusion (ECAE), has been the subject of intensive investigation because of the unique physical and mechanical properties of severely deformed materials. In this study, two types of ECAE processes were considered, dies with intersection angles ${\Phi}$ of $90^{\circ}$ and $120^{\circ}$, using experiments and simulations. The decoupled method, in which the rigid-plastic finite element method is incorporated with the rate-independent crystal plasticity model, was applied to predict the texture evolution in commercially pure aluminum during the ECAE processes with $120^{\circ}$ and $90^{\circ}$ dies. The simulated textures were compared with a measured texture via an EBSD OIM analysis. The comparison showed that the simulated textures generally were in good agreement with the experimentally measured texture.

Damage evolution of red-bed soft rock: Progressive change from meso-texture to macro-deformation

  • Guangjun Cui;Cuiying Zhou;Zhen Liu;Lihai Zhang
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.121-130
    • /
    • 2024
  • Many foundation projects are built on red-bed soft rocks, and the damage evolution of this kind of rocks affects the safety of these projects. At present, there is insufficient research on the damage evolution of red-bed soft rocks, especially the progressive process from mesoscopic texture change to macroscopic elastoplastic deformation. Therefore, based on the dual-porosity characteristics of pores and fissures in soft rock, we adopted a cellular automata model to simulate the propagation of these voids in soft rocks under an external load. Further, we established a macro-mesoscopic damage model of red-bed soft rocks, and its reliability was verified by tests. The results indicate that the relationship between the number and voids size conformed to a quartic polynomial, whereas the relationship between the damage variable and damage porosity conformed to a logistic curve. The damage porosity was affected by dual-porosity parameters such as the fractal dimension of pores and fissures. We verified the reliability of the model by comparing the test results with an established damage model. Our research results described the progressive process from mesoscopic texture change to macroscopic elastoplastic deformation and provided a theoretical basis for the damage evolution of these rocks.