• Title/Summary/Keyword: Texture Detection

Search Result 239, Processing Time 0.024 seconds

Automatic Generation of GCP Chips from High Resolution Images using SUSAN Algorithms

  • Um Yong-Jo;Kim Moon-Gyu;Kim Taejung;Cho Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.220-223
    • /
    • 2004
  • Automatic image registration is an essential element of remote sensing because remote sensing system generates enormous amount of data, which are multiple observations of the same features at different times and by different sensor. The general process of automatic image registration includes three steps: 1) The extraction of features to be used in the matching process, 2) the feature matching strategy and accurate matching process, 3) the resampling of the data based on the correspondence computed from matched feature. For step 2) and 3), we have developed an algorithms for automated registration of satellite images with RANSAC(Random Sample Consensus) in success. However, for step 1), There still remains human operation to generate GCP Chips, which is time consuming, laborious and expensive process. The main idea of this research is that we are able to automatically generate GCP chips with comer detection algorithms without GPS survey and human interventions if we have systematic corrected satellite image within adaptable positional accuracy. In this research, we use SUSAN(Smallest Univalue Segment Assimilating Nucleus) algorithm in order to detect the comer. SUSAN algorithm is known as the best robust algorithms for comer detection in the field of compute vision. However, there are so many comers in high-resolution images so that we need to reduce the comer points from SUSAN algorithms to overcome redundancy. In experiment, we automatically generate GCP chips from IKONOS images with geo level using SUSAN algorithms. Then we extract reference coordinate from IKONOS images and DEM data and filter the comer points using texture analysis. At last, we apply automatically collected GCP chips by proposed method and the GCP by operator to in-house automatic precision correction algorithms. The compared result will be presented to show the GCP quality.

  • PDF

Detection of Sea Fog by Combining MTSAT Infrared and AMSR Microwave Measurements around the Korean peninsula (MTSAT 적외채널과 AMSR 마이크로웨이브채널의 결합을 이용한 한반도 주변의 해무 탐지)

  • Park, Hyungmin;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.163-174
    • /
    • 2012
  • Brightness temperature (BT) difference between sea fog and sea surface is small, because the top height of fog is low. Therefore, it is very difficult to detect sea fog with infrared (IR) channels in the nighttime. To overcome this difficulty, we have developed a new algorithm for detection of sea fog that consists in three tests. Firstly, both stratus and sea fog were discriminated from the other clouds by using the difference between BTs $3.7{\mu}m$ and $11{\mu}m$. Secondly, stratus occurring at a level higher than sea fog was removed when the difference between cloud top temperature and sea surface temperature (SST) is smaller than 3 K. In this process, we used daily SST data from AMSR-E microwave measurements that is available even in the presence of cloud. Then, the SST was converted to $11{\mu}m$ BT based on the regressed relationship between AMSR-E SST and MTSAT-1R $11{\mu}m$ BT at 1733 UTC over clear sky regions. Finally, stratus was further removed by using the homogeneity test based on the difference in cloud top texture between sea fog and stratus. Comparison between the retrievals from our algorithm and that from Korea Meteorological Administration (KMA) algorithm, shows that the KMA algorithm often misconceived sea fog as stratus, resulting in underestimating the occurrence of sea fog. Monthly distribution of sea fog over northeast Asia in 2008 was derived from the proposed algorithm. The frequency of sea fog is lowest in winter, and highest in summer especially in June. The seasonality of the sea fog occurrence between East and West Sea was comparable, while it is not clearly identified over South Sea. These results would serve to prevent the possible occurrence of marine accidents associated with sea fog.

Steganalysis of Content-Adaptive Steganography using Markov Features for DCT Coefficients (DCT 계수의 마코프 특징을 이용한 내용 적응적 스테가노그래피의 스테그분석)

  • Park, Tae Hee;Han, Jong Goo;Eom, Il Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.97-105
    • /
    • 2015
  • Content-adaptive steganography methods embed secret messages in hard-to-model regions of covers such as complicated texture or noisy area. Content-adaptive steganalysis methods often need high dimensional features to capture more subtle relationships of local dependencies among adjacent pixels. However, these methods require many computational complexity and depend on the location of hidden message and the exploited distortion metrics. In this paper, we propose an improved steganalysis method for content-adaptive steganography to enhance detection rate with small number features. We first show that the features form the difference between DCT coefficients are useful for analyzing the content-adaptive steganography methods, and present feature extraction mehtod using first-order Markov probability for the the difference between DCT coefficients. The extracted features are used as input of ensemble classifier. Experimental results show that the proposed method outperforms previous schemes in terms of detection rates and accuracy in spite of a small number features in various content-adaptive stego images.

A New Depth and Disparity Visualization Algorithm for Stereoscopic Camera Rig

  • Ramesh, Rohit;Shin, Heung-Sub;Jeong, Shin-Il;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.645-650
    • /
    • 2010
  • In this paper, we present the effect of binocular cues which plays crucial role for the visualization of a stereoscopic or 3D image. This study is useful in extracting depth and disparity information by image processing technique. A linear relation between the object distance and the image distance is presented to discuss the cause of cybersickness. In the experimental results, three dimensional view of the depth map between the 2D images is shown. A median filter is used to reduce the noises available in the disparity map image. After the median filter, two filter algorithms such as 'Gabor' filter and 'Canny' filter are tested for disparity visualization between two images. The 'Gabor' filter is to estimate the disparity by texture extraction and discrimination methods of the two images, and the 'Canny' filter is used to visualize the disparity by edge detection of the two color images obtained from stereoscopic cameras. The 'Canny' filter is better choice for estimating the disparity rather than the 'Gabor' filter because the 'Canny' filter is much more efficient than 'Gabor' filter in terms of detecting the edges. 'Canny' filter changes the color images directly into color edges without converting them into the grayscale. As a result, more clear edges of the stereo images as compared to the edge detection by 'Gabor' filter can be obtained. Since the main goal of the research is to estimate the horizontal disparity of all possible regions or edges of the images, thus the 'Canny' filter is proposed for decipherable visualization of the disparity.

A Study on the 3D Shape Reconstruction Algorithm of an Indoor Environment Using Active Stereo Vision (능동 스테레오 비젼을 이용한 실내환경의 3차원 형상 재구성 알고리즘)

  • Byun, Ki-Won;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • In this paper, we propose the 3D shape reconstruction method that combine the mosaic method and the active stereo matching using the laser beam. The active stereo matching method detects the position information of the irradiated laser beam on object by analyzing the color and brightness variation of left and right image, and acquires the depth information in epipolar line. The mosaic method extracts feature point of image by using harris comer detection and matches the same keypoint between the sequence of images using the keypoint descriptor index method and infers correlation between the sequence of images. The depth information of the sequence image was calculated by the active stereo matching and the mosaic method. The merged depth information was reconstructed to the 3D shape information by wrapping and blending with image color and texture. The proposed reconstruction method could acquire strong the 3D distance information, and overcome constraint of place and distance etc, by using laser slit beam and stereo camera.

  • PDF

A Real-time Plane Estimation in Virtual Reality Using a RGB-D Camera in Indoors (RGB-D 카메라를 이용한 실시간 가상 현실 평면 추정)

  • Yi, Chuho;Cho, Jungwon
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.319-324
    • /
    • 2016
  • In the case of robot and Argument Reality applications using a camera in environments, a technology to estimate planes is a very important technology. A RGB-D camera can get a three-dimensional measurement data even in a flat which has no information of the texture of the plane;, however, there is an enormous amount of computation in order to process the point-cloud data of the image. Furthermore, it could not know the number of planes that are currently observed as an advance, also, there is an additional operation required to estimate a three dimensional plane. In this paper, we proposed the real-time method that decides the number of planes automatically and estimates the three dimensional plane by using the continuous data of an RGB-D camera. As experimental results, the proposed method showed an improvement of approximately 22 times faster speed compared to processing the entire data.

Boundary Detection using Adaptive Bayesian Approach to Image Segmentation (적응적 베이즈 영상분할을 이용한 경계추출)

  • Kim Kee Tae;Choi Yoon Su;Kim Gi Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.303-309
    • /
    • 2004
  • In this paper, an adaptive Bayesian approach to image segmentation was developed for boundary detection. Both image intensities and texture information were used for obtaining better quality of the image segmentation by using the C programming language. Fuzzy c-mean clustering was applied fer the conditional probability density function, and Gibbs random field model was used for the prior probability density function. To simply test the algorithm, a synthetic image (256$\times$256) with a set of low gray values (50, 100, 150 and 200) was created and normalized between 0 and 1 n double precision. Results have been presented that demonstrate the effectiveness of the algorithm in segmenting the synthetic image, resulting in more than 99% accuracy when noise characteristics are correctly modeled. The algorithm was applied to the Antarctic mosaic that was generated using 1963 Declassified Intelligence Satellite Photographs. The accuracy of the resulting vector map was estimated about 300-m.

Learning-based approach for License Plate Recognition System (학습 기반의 자동차 번호판 인식 시스템)

  • 김종배;김갑기;김광인;박민호;김항준
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • This paper presents a learning-based approach for the construction of license Plate recognition system. The system consist of three modules. They are respectively, car detection module, license plate recognition module and recognition module. Car detection module detects a car in the given image sequence obtained from the camera with simple color-based approach. Segmentation module extracts the license plate in detect car image using neural network as filters for analyzing the color and texture properties of license plate. Recognition module then reads characters in detected license plate with support vector machine (SVM)-based characters recognizer. The system has been tested from parking lot and tollgate, etc. and have show the following performances on average: Car detect rate 100%, segmentation rate 97.5%, and character recognition rate about 97.2%. Overall system performances is 94.7% and processing time is one sec. Then our propose system does well using real world.

  • PDF

Discrimination between Sea Fog and low Stratus Using Texture Structure of MODIS Satellite Images (MODIS 구름 영상의 표면 특성을 이용한 해무와 하층운의 구별)

  • Heo, Ki-Young;Min, Se-Yun;Ha, Kyung-Ja;Kim, Jae-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.571-581
    • /
    • 2008
  • The sea fog occurs frequently in the west coast of Korea in spring and summer. This study focused on the detection of sea fog using MODIS satellite images. We presented a method for sea fog detection based on the homogeneity level between low stratus and sea fog, which was that the top surface of sea fog had a homogeneous aspect while that of low stratus had a heterogenous aspect. The results showed that the both homogeneity of $11{\mu}m$ brightness temperature (BT) and brightness temperature difference (BTD, $BT_{3.7{\mu}m}-BT_{11{\mu}m}$) were available to discriminate sea fog from low stratus. The frequency of difference between BT in fog/stratus area and BT in clear area provided reasonable result. In addition, the threshold values of standard deviations of BT and BTD in the fog/stratus area were applicable to differentiate fog from low stratus.

Indoor Autonomous Driving through Parallel Reinforcement Learning of Virtual and Real Environments (가상 환경과 실제 환경의 병행 강화학습을 통한 실내 자율주행)

  • Jeong, Yuseok;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.4
    • /
    • pp.11-18
    • /
    • 2021
  • We propose a method that combines learning in a virtual environment and a real environment for indoor autonomous driving through reinforcement learning. In case of learning only in the real environment, it takes about 80 hours, but in case of learning in both the real and virtual environments, it takes 40 hours. There is an advantage in that it is possible to obtain optimized parameters through various experiments through fast learning while learning in a virtual environment and a real environment in parallel. After configuring a virtual environment using indoor hallway images, prior learning was carried out on the desktop, and learning in the real environment was conducted by connecting various sensors based on Jetson Xavier. In addition, in order to solve the accuracy problem according to the repeated texture of the indoor corridor environment, it was possible to determine the corridor wall object and increase the accuracy by learning the feature point detection that emphasizes the lower line of the corridor wall. As the learning progresses, the experimental vehicle drives based on the center of the corridor in an indoor corridor environment and moves through an average of 70 steering commands.