Automatic image registration is an essential element of remote sensing because remote sensing system generates enormous amount of data, which are multiple observations of the same features at different times and by different sensor. The general process of automatic image registration includes three steps: 1) The extraction of features to be used in the matching process, 2) the feature matching strategy and accurate matching process, 3) the resampling of the data based on the correspondence computed from matched feature. For step 2) and 3), we have developed an algorithms for automated registration of satellite images with RANSAC(Random Sample Consensus) in success. However, for step 1), There still remains human operation to generate GCP Chips, which is time consuming, laborious and expensive process. The main idea of this research is that we are able to automatically generate GCP chips with comer detection algorithms without GPS survey and human interventions if we have systematic corrected satellite image within adaptable positional accuracy. In this research, we use SUSAN(Smallest Univalue Segment Assimilating Nucleus) algorithm in order to detect the comer. SUSAN algorithm is known as the best robust algorithms for comer detection in the field of compute vision. However, there are so many comers in high-resolution images so that we need to reduce the comer points from SUSAN algorithms to overcome redundancy. In experiment, we automatically generate GCP chips from IKONOS images with geo level using SUSAN algorithms. Then we extract reference coordinate from IKONOS images and DEM data and filter the comer points using texture analysis. At last, we apply automatically collected GCP chips by proposed method and the GCP by operator to in-house automatic precision correction algorithms. The compared result will be presented to show the GCP quality.
Brightness temperature (BT) difference between sea fog and sea surface is small, because the top height of fog is low. Therefore, it is very difficult to detect sea fog with infrared (IR) channels in the nighttime. To overcome this difficulty, we have developed a new algorithm for detection of sea fog that consists in three tests. Firstly, both stratus and sea fog were discriminated from the other clouds by using the difference between BTs $3.7{\mu}m$ and $11{\mu}m$. Secondly, stratus occurring at a level higher than sea fog was removed when the difference between cloud top temperature and sea surface temperature (SST) is smaller than 3 K. In this process, we used daily SST data from AMSR-E microwave measurements that is available even in the presence of cloud. Then, the SST was converted to $11{\mu}m$ BT based on the regressed relationship between AMSR-E SST and MTSAT-1R $11{\mu}m$ BT at 1733 UTC over clear sky regions. Finally, stratus was further removed by using the homogeneity test based on the difference in cloud top texture between sea fog and stratus. Comparison between the retrievals from our algorithm and that from Korea Meteorological Administration (KMA) algorithm, shows that the KMA algorithm often misconceived sea fog as stratus, resulting in underestimating the occurrence of sea fog. Monthly distribution of sea fog over northeast Asia in 2008 was derived from the proposed algorithm. The frequency of sea fog is lowest in winter, and highest in summer especially in June. The seasonality of the sea fog occurrence between East and West Sea was comparable, while it is not clearly identified over South Sea. These results would serve to prevent the possible occurrence of marine accidents associated with sea fog.
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.8
/
pp.97-105
/
2015
Content-adaptive steganography methods embed secret messages in hard-to-model regions of covers such as complicated texture or noisy area. Content-adaptive steganalysis methods often need high dimensional features to capture more subtle relationships of local dependencies among adjacent pixels. However, these methods require many computational complexity and depend on the location of hidden message and the exploited distortion metrics. In this paper, we propose an improved steganalysis method for content-adaptive steganography to enhance detection rate with small number features. We first show that the features form the difference between DCT coefficients are useful for analyzing the content-adaptive steganography methods, and present feature extraction mehtod using first-order Markov probability for the the difference between DCT coefficients. The extracted features are used as input of ensemble classifier. Experimental results show that the proposed method outperforms previous schemes in terms of detection rates and accuracy in spite of a small number features in various content-adaptive stego images.
Journal of information and communication convergence engineering
/
v.8
no.6
/
pp.645-650
/
2010
In this paper, we present the effect of binocular cues which plays crucial role for the visualization of a stereoscopic or 3D image. This study is useful in extracting depth and disparity information by image processing technique. A linear relation between the object distance and the image distance is presented to discuss the cause of cybersickness. In the experimental results, three dimensional view of the depth map between the 2D images is shown. A median filter is used to reduce the noises available in the disparity map image. After the median filter, two filter algorithms such as 'Gabor' filter and 'Canny' filter are tested for disparity visualization between two images. The 'Gabor' filter is to estimate the disparity by texture extraction and discrimination methods of the two images, and the 'Canny' filter is used to visualize the disparity by edge detection of the two color images obtained from stereoscopic cameras. The 'Canny' filter is better choice for estimating the disparity rather than the 'Gabor' filter because the 'Canny' filter is much more efficient than 'Gabor' filter in terms of detecting the edges. 'Canny' filter changes the color images directly into color edges without converting them into the grayscale. As a result, more clear edges of the stereo images as compared to the edge detection by 'Gabor' filter can be obtained. Since the main goal of the research is to estimate the horizontal disparity of all possible regions or edges of the images, thus the 'Canny' filter is proposed for decipherable visualization of the disparity.
Journal of the Institute of Convergence Signal Processing
/
v.10
no.1
/
pp.13-22
/
2009
In this paper, we propose the 3D shape reconstruction method that combine the mosaic method and the active stereo matching using the laser beam. The active stereo matching method detects the position information of the irradiated laser beam on object by analyzing the color and brightness variation of left and right image, and acquires the depth information in epipolar line. The mosaic method extracts feature point of image by using harris comer detection and matches the same keypoint between the sequence of images using the keypoint descriptor index method and infers correlation between the sequence of images. The depth information of the sequence image was calculated by the active stereo matching and the mosaic method. The merged depth information was reconstructed to the 3D shape information by wrapping and blending with image color and texture. The proposed reconstruction method could acquire strong the 3D distance information, and overcome constraint of place and distance etc, by using laser slit beam and stereo camera.
In the case of robot and Argument Reality applications using a camera in environments, a technology to estimate planes is a very important technology. A RGB-D camera can get a three-dimensional measurement data even in a flat which has no information of the texture of the plane;, however, there is an enormous amount of computation in order to process the point-cloud data of the image. Furthermore, it could not know the number of planes that are currently observed as an advance, also, there is an additional operation required to estimate a three dimensional plane. In this paper, we proposed the real-time method that decides the number of planes automatically and estimates the three dimensional plane by using the continuous data of an RGB-D camera. As experimental results, the proposed method showed an improvement of approximately 22 times faster speed compared to processing the entire data.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.22
no.3
/
pp.303-309
/
2004
In this paper, an adaptive Bayesian approach to image segmentation was developed for boundary detection. Both image intensities and texture information were used for obtaining better quality of the image segmentation by using the C programming language. Fuzzy c-mean clustering was applied fer the conditional probability density function, and Gibbs random field model was used for the prior probability density function. To simply test the algorithm, a synthetic image (256$\times$256) with a set of low gray values (50, 100, 150 and 200) was created and normalized between 0 and 1 n double precision. Results have been presented that demonstrate the effectiveness of the algorithm in segmenting the synthetic image, resulting in more than 99% accuracy when noise characteristics are correctly modeled. The algorithm was applied to the Antarctic mosaic that was generated using 1963 Declassified Intelligence Satellite Photographs. The accuracy of the resulting vector map was estimated about 300-m.
Journal of the Institute of Convergence Signal Processing
/
v.2
no.1
/
pp.1-11
/
2001
This paper presents a learning-based approach for the construction of license Plate recognition system. The system consist of three modules. They are respectively, car detection module, license plate recognition module and recognition module. Car detection module detects a car in the given image sequence obtained from the camera with simple color-based approach. Segmentation module extracts the license plate in detect car image using neural network as filters for analyzing the color and texture properties of license plate. Recognition module then reads characters in detected license plate with support vector machine (SVM)-based characters recognizer. The system has been tested from parking lot and tollgate, etc. and have show the following performances on average: Car detect rate 100%, segmentation rate 97.5%, and character recognition rate about 97.2%. Overall system performances is 94.7% and processing time is one sec. Then our propose system does well using real world.
The sea fog occurs frequently in the west coast of Korea in spring and summer. This study focused on the detection of sea fog using MODIS satellite images. We presented a method for sea fog detection based on the homogeneity level between low stratus and sea fog, which was that the top surface of sea fog had a homogeneous aspect while that of low stratus had a heterogenous aspect. The results showed that the both homogeneity of $11{\mu}m$ brightness temperature (BT) and brightness temperature difference (BTD, $BT_{3.7{\mu}m}-BT_{11{\mu}m}$) were available to discriminate sea fog from low stratus. The frequency of difference between BT in fog/stratus area and BT in clear area provided reasonable result. In addition, the threshold values of standard deviations of BT and BTD in the fog/stratus area were applicable to differentiate fog from low stratus.
Journal of Korea Society of Industrial Information Systems
/
v.26
no.4
/
pp.11-18
/
2021
We propose a method that combines learning in a virtual environment and a real environment for indoor autonomous driving through reinforcement learning. In case of learning only in the real environment, it takes about 80 hours, but in case of learning in both the real and virtual environments, it takes 40 hours. There is an advantage in that it is possible to obtain optimized parameters through various experiments through fast learning while learning in a virtual environment and a real environment in parallel. After configuring a virtual environment using indoor hallway images, prior learning was carried out on the desktop, and learning in the real environment was conducted by connecting various sensors based on Jetson Xavier. In addition, in order to solve the accuracy problem according to the repeated texture of the indoor corridor environment, it was possible to determine the corridor wall object and increase the accuracy by learning the feature point detection that emphasizes the lower line of the corridor wall. As the learning progresses, the experimental vehicle drives based on the center of the corridor in an indoor corridor environment and moves through an average of 70 steering commands.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.