• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.029 seconds

A Study on Keyword Information Characteristics of Product Names for Online Sales of Women's Jeans Using Text Mining (텍스트마이닝을 활용한 온라인 판매 여성 청바지 상품명에 나타난 키워드의 정보 특성 분석)

  • Yeo Sun Kang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.35-51
    • /
    • 2023
  • This study used text mining to extract 2,842 keywords from 7,397 product names and organized them into categories in order to analyze the characteristics of keywords appearing in the product names of jeans after 2020. The item category included denim and Chungbaji [청바지], and Ilja [일자], while the silhouette category included wide and bootcut. In addition, high-waist and banding comprised the making sector, and the materials category consisted of napping, spandex, and soft blue. Denim surpassed the others in frequency, co-occurrence frequency, and centrality, and co-appeared with various other keywords. Also, the co-appearance of item and silhouette was prominent, and there were many keyword combinations that showed characteristics related to (a) high waist; (b) hemline detail; (c) rubber band; and (d) partial tearing. Furthermore, idiom expressions such as 'slim fit' and 'back tearing', which were not highlighted in the co-occurrence frequency, were additionally confirmed through correlation. Therefore, the product name analysis effectively identified the detailed characteristics of the silhouette and the making of jeans preferred by consumers.

Analysis of Consumer Value Structure in Vintage Clothing Consumption -Based on Text Mining and Means-End Chain Analysis- (빈티지 의류 소비에서의 소비자 가치구조 분석 -텍스트 마이닝 기법과 수단-목적 사슬 분석을 중심으로-)

  • Yujeong Won;Chanhee Kang;Yuri Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.4
    • /
    • pp.729-742
    • /
    • 2023
  • This two-part study explores the changes in the types of perceived value and consumption channels for vintage clothing and the relationship between the two variables. In Study 1, we used text mining with the keyword "fashion+vintage." Emotional value was the most frequently mentioned, and environmental value increased the most. We also revealed an increasing trend in online channels for vintage clothing consumption. In Study 2, we analyzed 30 interviews with consumers who had purchased vintage clothing through online channels. We identified 7 attributes and 20 goals for vintage consumption online and pinpointed three strong connections. First, consumers reported high levels of service satisfaction due to the usefulness of algorithms. Second, the authenticity and heritage information available through online and mobile channels were associated with consumers' perceptions of value related to financial benefits. Third, consumers sought to find rare products through online channels, leading to a strong influence on their sense of achievement. Overall, this study proposed ways to increase the value of vintage clothing perceived by consumers through consumption online.

A Study on the Consumer Boycott Participation Experience: Using Text Mining Analysis and In-depth Interview (소비자불매운동 참여 경험에 관한 연구: 텍스트마이닝 분석과 심층면접기법의 활용)

  • Han, Juno;Li, Xu;Hwang, Hyesun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.88-106
    • /
    • 2022
  • This study examined the social discourse on consumer boycott and explored consumer experience using text mining of mass media and social media data and the in-depth interview. The result showed that the topics of online news related to the boycott included the causes of the boycott, the responses of each actor in the process of the boycott, and the effects of the boycott. In the result of the in-depth interviews, it was found that the boycott has been decentralized and the participants had the experience of exploring and verifying information on their own. In the boycott process, there were mixed experiences due to the absence of substitutes and the marketing influence, and positive experiences of expressing one's thoughts and strengthening beliefs through the boycott.

A Big Data Analysis on Research Keywords, Centrality, and Topics of International Trade using the Text Mining and Social Network (텍스트 마이닝과 소셜 네트워크 기법을 활용한 국제무역 키워드, 중심성과 토픽에 대한 빅데이터 분석)

  • Chae-Deug Yi
    • Korea Trade Review
    • /
    • v.47 no.4
    • /
    • pp.137-159
    • /
    • 2022
  • This study aims to analyze international trade papers published in Korea during the past 2002-2022 years. Through this study, it is possible to understand the main subject and direction of research in Korea's international trade field. As the research mythologies, this study uses the big data analysis such as the text mining and Social Network Analysis such as frequency analysis, several centrality analysis, and topic analysis. After analyzing the empirical results, the frequency of key word is very high in trade, export, tariff, market, industry, and the performance of firm. However, there has been a tendency to include logistics, e-business, value and chain, and innovation over the time. The degree and closeness centrality analyses also show that the higher frequency key words also have been higher in the degree and closeness centrality. In contrast, the order of eigenvector centrality seems to be different from those of the degree and closeness centrality. The ego network shows the density of business, sale, exchange, and integration appears to be high in order unlike the frequency analysis. The topic analysis shows that the export, trade, tariff, logstics, innovation, industry, value, and chain seem to have high the probabilities of included in several topics.

Text-Mining Analysis of Korea Government R&D Trends in Construction Machinery Domains (텍스트 마이닝을 통한 건설기계분야 국내 정부 R&D 연구동향 분석)

  • Bom Yun;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.spc
    • /
    • pp.1-8
    • /
    • 2023
  • To investigate the national science and technology policy direction in the field of construction machinery, an analysis was conducted on projects selected as national research and development (R&D) initiatives by the government. Assuming that the project titles contain key keywords, text mining was employed to substantiate this assumption. Project information data spanning nine years from 2014 to 2022 was collected through the National Science & Technology Information Service (NTIS). To observe changes over time, the years were divided into three-year sections. To analyze research trends efficiently, keywords were categorized into groups: 'equipment,' 'smart,' and 'eco-friendly.' Based on the collected data, keyword frequency analysis, N-gram analysis, and topic modeling were performed. The research findings indicate that domestic government R&D in the construction machinery field primarily focuses on smart-related research and development. Specifically, investments in monitoring systems and autonomous operation technologies are increasing. This study holds significance in analyzing objective research trends through the utilization of big data analysis techniques and is expected to contribute to future research and development planning, strategic formulation, and project management.

Understanding of the Overview of Quality 4.0 Using Text Mining (텍스트마이닝을 활용한 품질 4.0 연구동향 분석)

  • Kim, Minjun
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.3
    • /
    • pp.403-418
    • /
    • 2023
  • Purpose: The acceleration of technological innovation, specifically Industry 4.0, has triggered the emergence of a quality management paradigm known as Quality 4.0. This study aims to provide a systematic overview of dispersed studies on Quality 4.0 across various disciplines and to stimulate further academic discussions and industrial transformations. Methods: Text mining and machine learning approaches are applied to learn and identify key research topics, and the suggested key references are manually reviewed to develop a state-of-the-art overview of Quality 4.0. Results: 1) A total of 27 key research topics were identified based on the analysis of 1234 research papers related to Quality 4.0. 2) A relationship among the 27 key research topics was identified. 3) A multilevel framework consisting of technological enablers, business methods and strategies, goals, application industries of Quality 4.0 was developed. 4) The trends of key research topics was analyzed. Conclusion: The identification of 27 key research topics and the development of the Quality 4.0 framework contribute to a better understanding of Quality 4.0. This research lays the groundwork for future academic and industrial advancements in the field and encourages further discussions and transformations within the industry.

Analyzing OTT Interactive Content Using Text Mining Method (텍스트 마이닝으로 OTT 인터랙티브 콘텐츠 다시보기)

  • Sukchang Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.859-865
    • /
    • 2023
  • In a situation where service providers are increasingly focusing on content development due to the intense competition in the OTT market, interactive content that encourages active participation from viewers is garnering significant attention. In response to this trend, research on interactive content is being conducted more actively. This study aims to analyze interactive content through text mining techniques, with a specific focus on online unstructured data. The analysis includes deriving the characteristics of keywords according to their weight, examining the relationship between OTT platforms and interactive content, and tracking changes in the trends of interactive content based on objective data. To conduct this analysis, detailed techniques such as 'Word Cloud', 'Relationship Analysis', and 'Keyword Trend' are used, and the study also aims to derive meaningful implications from these analyses.

A Study on Recognition of Robot Barista Using Social Media Text Mining (소셜미디어 텍스트마이닝을 활용한 로봇 바리스타 인식 탐색 연구)

  • Han Jangheon;An Kabsoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.37-47
    • /
    • 2024
  • The food tech market, which uses artificial intelligence robots for the restaurant industry, is gradually expanding. Among them, the robot barista, a representative food tech case for the restaurant industry, is characterized by increasing the efficiency of operators and providing things for visitors to see and enjoy through a 24-hour unmanned operation. This research was conducted through text mining analysis to examine trends related to robot baristas in the restaurant industry. The research results are as follows. First, keywords such as coffee, cafe, certification, ordering, taste, interest, people, robot cafe, coffee barista expert, free, course, unmanned, and wine sommelier were highly frequent. Second, time, variety, possibility, people, process, operation, service, and thought showed high closeness centrality. Third, as a result of CONCOR analysis, a total of 5 keyword clusters with high relevance to the restaurant industry were formed. In order to activate robot barista in the future, it is necessary to pay more attention to functional development that can strengthen its functions and features, as well as online promotion through various events and SNS in the robot barista cafe.

A Decade of Shifting Consumer Laundry Needs Through Text Mining Analysis (텍스트마이닝을 통한 10년간 소비자 세탁행동 요구의 변화)

  • Habin Kim
    • Journal of Fashion Business
    • /
    • v.28 no.2
    • /
    • pp.139-151
    • /
    • 2024
  • In recent years, consumer clothing behaviors have undergone significant changes due to global phenomena such as climate change, pandemics, and advances in IT technology. Laundry behaviors closely connected to how consumers handle clothes and their clothing lifecycle have also experienced considerable transformations. However, research on laundry behavior has been limited despite its importance in understanding consumer clothing habits. This study employed text mining analysis of social data spanning the past decade to explore overall trends in consumer laundry behavior, aiming to understand key topics of interest and changes over time. Through LDA topic modeling analysis, nine topics were identified. They were grouped into subjects, targets, methods, and reasons related to laundry. Analyzing relative frequencies of keywords for each topic group revealed evolving consumer laundry behavior in response to societal changes. Over time, laundry behavior showed a dispersal of agents and locations, increased diversification of laundry targets, and a growing interest in various methods and reasons for doing laundry. This research sheds light on the broader context of laundry behavior, offering a more comprehensive understanding of consumer attitudes and perceptions than previous studies. It underscores the significance of laundry as a daily, socio-cultural aspect of our lives. Additionally, this study identifies changing customer values and suggests improvements and strategic branding for laundry services, providing practical implications.

Analyzing Trend of Clinic-Level Medical Institutions and Pharmacy Name Using Text Mining Technique (텍스트마이닝을 통한 의원급 의료기관 및 약국 명칭 유행 분석)

  • Inseong Lee;NamKwen Kim
    • The Journal of Korean Medicine
    • /
    • v.45 no.3
    • /
    • pp.122-130
    • /
    • 2024
  • Objectives: This study aimed to analyze trend of names of clinic-level medical institutions and pharmacy in Korea to understand interaction between health care provider and consumer. Methods: This study analyzes 60,101 medical clinic names, 27,609 dental clinic names, 25,506 Korean medicine clinic names, and 68,032 pharmacy names. Official records from Korea Local Information Research & Development Institute, data from 1946 to June 2024. Researcher uses text-mining technique including tokenizer of Soynlp and wordcloud to visualize trends. Results: In pharmacy business names, franchise name 'Onnuri' is dominant. In case of dental clinic and Korean medicine clinic, university names like 'Seoul', 'Yeonsei', 'Kyunghee' are dominant. Similarly, medical clinic names include university names but also teaching hospital names like 'Samsung' or 'Seongmo(St. Mary)'. Commonly used word in clinic-level medical institution and pharmacy is 'Uri' and latest trend words are 'Bareun' and '365'. Conclusions: Methods presented in this study for analyzing business names can directly applied to the study of business names in other industries. The results of this study would develop marketing strategies of medical industry. Furthermore, since business name provide concentrated data on market perception and the interaction between consumers and providers, they can be useful for sociology and medical humanities researchers.