• Title/Summary/Keyword: Text sentiment analysis

Search Result 241, Processing Time 0.025 seconds

Text Categorization with Improved Deep Learning Methods

  • Wang, Xingfeng;Kim, Hee-Cheol
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.106-113
    • /
    • 2018
  • Although deep learning methods of convolutional neural networks (CNNs) and long-/short-term memory (LSTM) are widely used for text categorization, they still have certain shortcomings. CNNs require that the text retain some order, that the pooling lengths be identical, and that collateral analysis is impossible; In case of LSTM, it requires the unidirectional operation and the inputs/outputs are very complex. Against these problems, we thus improved these traditional deep learning methods in the following ways: We created collateral CNNs accepting disorder and variable-length pooling, and we removed the input/output gates when creating bidirectional LSTMs. We have used four benchmark datasets for topic and sentiment classification using the new methods that we propose. The best results were obtained by combining LTSM regional embeddings with data convolution. Our method is better than all previous methods (including deep learning methods) in terms of topic and sentiment classification.

Developing Sentimental Analysis System Based on Various Optimizer

  • Eom, Seong Hoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.100-106
    • /
    • 2021
  • Over the past few decades, natural language processing research has not made much. However, the widespread use of deep learning and neural networks attracted attention for the application of neural networks in natural language processing. Sentiment analysis is one of the challenges of natural language processing. Emotions are things that a person thinks and feels. Therefore, sentiment analysis should be able to analyze the person's attitude, opinions, and inclinations in text or actual text. In the case of emotion analysis, it is a priority to simply classify two emotions: positive and negative. In this paper we propose the deep learning based sentimental analysis system according to various optimizer that is SGD, ADAM and RMSProp. Through experimental result RMSprop optimizer shows the best performance compared to others on IMDB data set. Future work is to find more best hyper parameter for sentimental analysis system.

Design of Twitter data collection system for regional sentiment analysis (지역별 감성 분석을 위한 트위터 데이터 수집 시스템 설계)

  • Choi, Kiwon;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.506-509
    • /
    • 2017
  • Opinion mining is a way to analyze the emotions in the text and is used to identify the emotional state of the author and to find out the opinions of the public. As you can analyze individual emotions through opinion mining, if you analyze the text by region, you can find out the emotional state you have in each region. The regional sentiment analysis can obtain information that could not be obtained from personal sentiment analysis, and if a certain area has emotions, it can understand the cause. For regional sentiment analysis, we need text data created by region, so we need to collect data through Twitter crawling. Therefore, this paper designs a Twitter data collection system for regional sentiment analysis. The client requests the tweet data of the specific region and time, and the server collects and transmits the requested tweet data from the client. Through the latitude and longitude values of the region, it collects the tweet data of the area, and it can manage the text by region and time through collected data. We expect efficient data collection and management for emotional analysis through the design of this system.

  • PDF

Proposal of Brand Evaluation Map through Big Data : Focus on The Hyundai Motor's Product Evaluation (빅데이터를 통한 브랜드 평가 맵 제안 : 현대자동차 제품 평가 중심으로)

  • Youn, Dae Myung;Lee, Yong Hyuck;Lee, Bong Gyou
    • Journal of Information Technology Services
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • Through text mining, sentiment analysis, and semiotics analysis, this study aims to reinterpret the meaning of user emotional words and related words to derive strategic elements of brand and design. After selecting a local car manufacturer whose user opinion on the brand is a clear topic, web-crawl the car comments of the manufacturer directly created by the users online. Then, analyze the extracted morphology and its associated words and convert them to fit the marketing mix theory. Through this process, propose a methodology that allows consumers to supplement and improve brand elements with negative sensibilities, and to inherit elements with positive sensibilities and manage brands reasonably. In particular, the Map presented in this study are considered to be fully utilized as information for overall brand management.

A Text Mining Analysis on Students' Perceptions about Capstone Design: Case of Industrial & Management Engineering (텍스트 마이닝을 활용한 캡스톤 디자인에 관한 학생 인식 탐색: 산업경영공학 사례)

  • Wi, Gwang-Ho;Kim, Yun-jin;Kim, Moon-Soo
    • Journal of Engineering Education Research
    • /
    • v.25 no.5
    • /
    • pp.85-93
    • /
    • 2022
  • Capstone Design, a project-based learning technique, is the most important curriculum that clarifying major knowledge and cultivating the ability to apply through the process of solving problems in the industrial field centered on the student project team. Accordingly, various and extensive studies are being conducted for the successful implementation of capstone design courses. Unlike previous studies, this study aimed to quantitatively analyze the opinions that recorded the experiences and feelings of students who performed capstone design, and used text mining methodologies such as frequency analysis, correlation analysis, topic modeling, and sentiment analysis. As a result of examining the overall opinions of the latter period through frequency analysis and correlation analysis, there was a difference between the languages used by the students in the opinions according to gender and project results. Through topic modeling analysis, 'topic selection' and 'the relationship between team members' showed an increase in occupancy or high occupancy, and topics such as 'presentation', 'leadership', and 'feeling what they felt' showed a tendency to decreasing occupancy. Lastly, sentiment analysis has found that female students showed more neutral emotions than male students, and the passed group showed more negative emotions than the non-passed group and less neutral emotions. Based on these findings, students' practical recognition of the curriculum was considered and implications for the improvement of capstone design were presented.

Trend Analysis of FinTech and Digital Financial Services using Text Mining (텍스트마이닝을 활용한 핀테크 및 디지털 금융 서비스 트렌드 분석)

  • Kim, Do-Hee;Kim, Min-Jeong
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.131-143
    • /
    • 2022
  • Focusing on FinTech keywords, this study is analyzing newspaper articles and Twitter data by using text mining methodology in order to understand trends in the industry of domestic digital financial service. In the growth of FinTech lifecycle, the frequency analysis has been performed by four important points: Mobile Payment Service, Internet Primary Bank, Data 3 Act, MyData Businesses. Utilizing frequency analysis, which combines the keywords 'China', 'USA', and 'Future' with the 'FinTech', has been predicting the FinTech industry regarding of the current and future position. Next, sentiment analysis was conducted on Twitter to quantify consumers' expectations and concerns about FinTech services. Therefore, this study is able to share meaningful perspective in that it presented strategic directions that the government and companies can use to understanding future FinTech market by combining frequency analysis and sentiment analysis.

Item-Based Collaborative Filtering Recommendation Technique Using Product Review Sentiment Analysis (상품 리뷰 감성분석을 이용한 아이템 기반 협업 필터링 추천 기법)

  • Yun, So-Young;Yoon, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.970-977
    • /
    • 2020
  • The collaborative filtering recommendation technique has been the most widely used since the beginning of e-commerce companies introducing the recommendation system. As the online purchase of products or contents became an ordinary thing, however, recommendation simply applying purchasers' ratings led to the problem of low accuracy in recommendation. To improve the accuracy of recommendation, in this paper suggests the method of collaborative filtering that analyses product reviews and uses them as a weighted value. The proposed method refines product reviews with text mining to extract features and conducts sentiment analysis to draw a sentiment score. In order to recommend better items to user, sentiment weight is used to calculate the predicted values. The experiment results show that higher accuracy can be gained in the proposed method than the traditional collaborative filtering.

The Impact of Topic Distribution on Review Sentiment: A Comparative Study between South Korea and the U.S.

  • Cho, Mina;Hwang, Dugmee;Jeon, Seongmin
    • 한국벤처창업학회:학술대회논문집
    • /
    • 2022.04a
    • /
    • pp.123-126
    • /
    • 2022
  • Online reviews offer valuable information to businesses by reflecting consumer experiences about their products and services. Two important aspects of online reviews are first, the topics consumers choose to address and second, the sentiments expressed in their reviews. Building upon previous literature that shows online reviews are context-dependent, we examine the impact of topic distribution on review sentiment in South Korea and the U.S. during pre-and post-pandemic periods. After performing topic modeling on Airbnb app review data, we measure the contribution of each topic on review sentiment using SHAP values. Our results indicate variations in topic distribution trends between 2018 and 2021. Also, the order and magnitude of topics' impact on review sentiment change between pre-and post-pandemic periods for both countries. This study can help businesses to understand how topics and sentiments associated with their products and services changed after pandemic, and also help them identify areas of improvement.

  • PDF

Impact of Topic Distribution on Review Sentiment: A Comparative Study between South Korea and the U.S.

  • Mina Cho;Dugmee Hwang;SeongMin Jeon
    • Asia pacific journal of information systems
    • /
    • v.32 no.3
    • /
    • pp.514-536
    • /
    • 2022
  • Online reviews offer valuable information to businesses by reflecting consumer experiences about their products and services. Two crucial aspects of online reviews are the topics consumers choose to address, and the sentiments expressed in their reviews. Building upon previous literature that shows online reviews are context-dependent, we employ the Expectation-Confirmation Theory (ECT) to examine the impact of topic distribution on review sentiment in South Korea and the U.S. during pre- and post-pandemic periods. After applying a topic modeling to Airbnb app review data, we measure the contribution of each topic on review sentiment using SHAP values. Our results indicate variations in topic distribution trends between 2018 and 2021. In addition, the order and magnitude of topics' impact on review sentiment change between pre- and post-pandemic periods for both countries. This study can help businesses understand how topics and sentiments associated with their products and services changed after the pandemic and thus identify areas of improvement.

Regulatory Sentiment and Economic Performance

  • JUNGWOOK KIM;JINKYEONG KIM
    • KDI Journal of Economic Policy
    • /
    • v.45 no.1
    • /
    • pp.69-86
    • /
    • 2023
  • Regulatory sentiment refers to the market's subjective evaluation of regulatory reform and is one of the most widely adopted indicators to those charged with implementing and diagnosing regulatory policies. The use of regulatory sentiment in advanced analysis has become universal, albeit it is often limited due to difficulties in articulating consistent and objective quantitative indicators that can meticulously reflect market sentiment overall. Thus, despite ample effort by scholars to read the economic impact of regulatory sentiment in the real economy, causal links are difficult to spot. To fill this gap in the literature, this study analyzes a regulatory sentiment index and economic performance indicators through a text analysis approach and by inspecting diverse tones in media articles. Using different stages of tests, the paper identifies a causal relationship between regulatory sentiment and actual economic activities as measured by private consumption, facility investment, construction investment, gross domestic investment, and employment. Additionally, as a result of analyzing one-unit impulse of regulatory perception, the initial impact on economic growth and private investment was found to be negligible; this was followed by a positive (+) response, after which it converged to zero. Construction investment showed a positive (+) response initially, which then rapidly changed to a negative (-) response and then converged to zero. Gross domestic investment as the initial effect was negligible after showing a positive (+) reaction. Unfortunately, the facility investment outcome was found to be insignificant in the impulse response test. Nevertheless, it can be concluded that it is necessary and important to increase the sensitivity to regulations to promote the economic effectiveness of regulatory reforms. Thus, instead of dealing with policies with the vague goal of merely improving regulatory sentiment, using regulatory sentiment as an indicator of major policies could be an effective approach.