Design of Twitter data collection system for regional sentiment analysis

지역별 감성 분석을 위한 트위터 데이터 수집 시스템 설계

  • Choi, Kiwon (Inje-University Institute of Digital Anti-aging Healthcare) ;
  • Kim, Hee-Cheol (Inje-University Institute of Digital Anti-aging Healthcare)
  • 최기원 (인제대학교 디지털 항노화 헬스케어학과) ;
  • 김희철 (인제대학교 디지털 항노화 헬스케어학과)
  • Published : 2017.10.25

Abstract

Opinion mining is a way to analyze the emotions in the text and is used to identify the emotional state of the author and to find out the opinions of the public. As you can analyze individual emotions through opinion mining, if you analyze the text by region, you can find out the emotional state you have in each region. The regional sentiment analysis can obtain information that could not be obtained from personal sentiment analysis, and if a certain area has emotions, it can understand the cause. For regional sentiment analysis, we need text data created by region, so we need to collect data through Twitter crawling. Therefore, this paper designs a Twitter data collection system for regional sentiment analysis. The client requests the tweet data of the specific region and time, and the server collects and transmits the requested tweet data from the client. Through the latitude and longitude values of the region, it collects the tweet data of the area, and it can manage the text by region and time through collected data. We expect efficient data collection and management for emotional analysis through the design of this system.

오피니언 마이닝은 텍스트 속의 감성을 분석해 낼 수 있는 방법으로 작성자의 정서 상태 파악이나 대중의 의견을 알아내기 위해 사용된다. 이를 통해서 개인의 감성을 분석할 수 있듯이 텍스트를 지역별로 수집하여 분석한다면 지역별로 가지고 있는 감정 상태에 대해서 알아 낼 수 있다. 지역별 감성분석은 개인 감성분석에서 얻어 낼 수 없었던 정보를 얻어낼 수 있으며 해당 지역이 어떠한 감정을 가지고 있을 때, 그 원인에 대해서도 파악할 수 있다. 지역별 감성 분석을 위해서는 각 지역별로 작성된 텍스트 데이터들이 필요하므로 트위터 크롤링을 통해서 데이터를 수집해야 한다. 따라서 본 논문에서는 지역별 감성분석을 위한 트위터 데이터 수집 시스템을 설계한다. 클라이언트에서는 특정 지역 및 시간대의 트윗 데이터를 요청하며, 서버에서는 클라이언트로부터 요청받은 트윗 데이터를 수집 및 전송한다. 지역이 가지는 위도, 경도 값을 통해 해당 지역의 트윗 데이터를 수집하며, 수집한 데이터들을 통해 텍스트를 지역 및 시간별로 관리할 수 있다. 본 시스템 설계를 통해 감성분석을 위한 효율적인 데이터 수집 및 관리를 기대한다.

Keywords