• Title/Summary/Keyword: Text sentiment analysis

Search Result 241, Processing Time 0.027 seconds

Methodology for Identifying Key Factors in Sentiment Analysis by Customer Characteristics Using Attention Mechanism

  • Lee, Kwangho;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.207-218
    • /
    • 2020
  • Recently, due to the increase of online reviews and the development of analysis technology, the interest and demand for online review analysis continues to increase. However, previous studies have not considered the emotions contained in each vocabulary may differ from one reviewer to another. Therefore, this study first classifies the customer group according to the customer's grade, and presents the result of analyzing the difference by performing review analysis for each customer group. We found that the price factor had a significant influence on the evaluation of products for customers with high ratings. On the contrary, in the case of low-grade customers, the degree of correspondence between the contents introduced in the mall and the actual product significantly influenced the evaluation of the product. We expect that the proposed methodology can be effectively used to establish differentiated marketing strategies by identifying factors that affect product evaluation by customer group.

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.

Stock Price Prediction Using Sentiment Analysis: from "Stock Discussion Room" in Naver (SNS감성 분석을 이용한 주가 방향성 예측: 네이버 주식토론방 데이터를 이용하여)

  • Kim, Myeongjin;Ryu, Jihye;Cha, Dongho;Sim, Min Kyu
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.4
    • /
    • pp.61-75
    • /
    • 2020
  • The scope of data for understanding or predicting stock prices has been continuously widened from traditional structured format data to unstructured data. This study investigates whether commentary data collected from SNS may affect future stock prices. From "Stock Discussion Room" in Naver, we collect 20 stocks' commentary data for six months, and test whether this data have prediction power with respect to one-hour ahead price direction and price range. Deep neural network such as LSTM and CNN methods are employed to model the predictive relationship. Among the 20 stocks, we find that future price direction can be predicted with higher than the accuracy of 50% in 13 stocks. Also, the future price range can be predicted with higher than the accuracy of 50% in 16 stocks. This study validate that the investors' sentiment reflected in SNS community such as Naver's "Stock Discussion Room" may affect the demand and supply of stocks, thus driving the stock prices.

Exploring Feature Selection Methods for Effective Emotion Mining (효과적 이모션마이닝을 위한 속성선택 방법에 관한 연구)

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.107-117
    • /
    • 2019
  • In the era of SNS, many people relies on it to express their emotions about various kinds of products and services. Therefore, for the companies eagerly seeking to investigate how their products and services are perceived in the market, emotion mining tasks using dataset from SNSs become important much more than ever. Basically, emotion mining is a branch of sentiment analysis which is based on BOW (bag-of-words) and TF-IDF. However, there are few studies on the emotion mining which adopt feature selection (FS) methods to look for optimal set of features ensuring better results. In this sense, this study aims to propose FS methods to conduct emotion mining tasks more effectively with better outcomes. This study uses Twitter and SemEval2007 dataset for the sake of emotion mining experiments. We applied three FS methods such as CFS (Correlation based FS), IG (Information Gain), and ReliefF. Emotion mining results were obtained from applying the selected features to nine classifiers. When applying DT (decision tree) to Tweet dataset, accuracy increases with CFS, IG, and ReliefF methods. When applying LR (logistic regression) to SemEval2007 dataset, accuracy increases with ReliefF method.

Consumers' perceptions of dietary supplements before and after the COVID-19 pandemic based on big data

  • Eunjung Lee;Hyo Sun Jung;Jin A Jang
    • Journal of Nutrition and Health
    • /
    • v.56 no.3
    • /
    • pp.330-347
    • /
    • 2023
  • Purpose: This study identified words closely associated with the keyword "dietary supplement" (DS) using big data in Korean social media and investigated consumer perceptions and trends related to DSs before (2019) and after the coronavirus disease 2019 (COVID-19) pandemic (2021). Methods: A total of 37,313 keywords were found for the 2019 period, and 35,336 keywords were found for the 2021 period using blogs and cafes on Daum and Naver. Results were derived by text mining, semantic networking, network visualization analysis, and sentiment analysis. Results: The DS-related keywords that frequently appeared before and after COVID-19 were "recommend", "vitamin", "health", "children", "multiple", and "lactobacillus". "Calcium", "lutein", "skin", and "immunity" also had high frequency-inverse document frequency (TF-IDF) values. These keywords imply a keen interest in DSs among Korean consumers. Big data results also reflected social phenomena related to DSs; for example, "baby" and "pregnant woman" had lower TD-IDF values after the pandemic, suggesting lower marriage and birth rates but higher values for "joint", indicating reduced physical activity. A network centered on vitamins and health care was produced by semantic network analysis in 2019. In 2021, values were highest for deficiency and need, indicating that individuals were searching for DSs after the COVID-19 pandemic due to a lack an awareness of the need for adequate nutrient intake. Before the pandemic, DSs and vitamins were associated with healthcare and life cycle-related topics, such as pregnancy, but after the COVID-19 pandemic, consumer interests changed to disease prevention and treatment. Conclusion: This study provides meaningful clues regarding consumer perceptions and trends related to DSs before and after the COVID-19 pandemic and fundamental data on the effect of the pandemic on consumer interest in dietary supplements.

Monitoring Mood Trends of Twitter Users using Multi-modal Analysis method of Texts and Images (텍스트 및 영상의 멀티모달분석을 이용한 트위터 사용자의 감성 흐름 모니터링 기술)

  • Kim, Eun Yi;Ko, Eunjeong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.419-431
    • /
    • 2018
  • In this paper, we propose a novel method for monitoring mood trend of Twitter users by analyzing their daily tweets for a long period. Then, to more accurately understand their tweets, we analyze all types of content in tweets, i.e., texts and emoticons, and images, thus develop a multimodal sentiment analysis method. In the proposed method, two single-modal analyses first are performed to extract the users' moods hidden in texts and images: a lexicon-based and learning-based text classifier and a learning-based image classifier. Thereafter, the extracted moods from the respective analyses are combined into a tweet mood and aggregated a daily mood. As a result, the proposed method generates a user daily mood flow graph, which allows us for monitoring the mood trend of users more intuitively. For evaluation, we perform two sets of experiment. First, we collect the data sets of 40,447 data. We evaluate our method via comparing the state-of-the-art techniques. In our experiments, we demonstrate that the proposed multimodal analysis method outperforms other baselines and our own methods using text-based tweets or images only. Furthermore, to evaluate the potential of the proposed method in monitoring users' mood trend, we tested the proposed method with 40 depressive users and 40 normal users. It proves that the proposed method can be effectively used in finding depressed users.

The Prediction of the Helpfulness of Online Review Based on Review Content Using an Explainable Graph Neural Network (설명가능한 그래프 신경망을 활용한 리뷰 콘텐츠 기반의 유용성 예측모형)

  • Eunmi Kim;Yao Ziyan;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.309-323
    • /
    • 2023
  • As the role of online reviews has become increasingly crucial, numerous studies have been conducted to utilize helpful reviews. Helpful reviews, perceived by customers, have been verified in various research studies to be influenced by factors such as ratings, review length, review content, and so on. The determination of a review's helpfulness is generally based on the number of 'helpful' votes from consumers, with more 'helpful' votes considered to have a more significant impact on consumers' purchasing decisions. However, recently written reviews that have not been exposed to many customers may have relatively few 'helpful' votes and may lack 'helpful' votes altogether due to a lack of participation. Therefore, rather than relying on the number of 'helpful' votes to assess the helpfulness of reviews, we aim to classify them based on review content. In addition, the text of the review emerges as the most influential factor in review helpfulness. This study employs text mining techniques, including topic modeling and sentiment analysis, to analyze the diverse impacts of content and emotions embedded in the review text. In this study, we propose a review helpfulness prediction model based on review content, utilizing movie reviews from IMDb, a global movie information site. We construct a review helpfulness prediction model by using an explainable Graph Neural Network (GNN), while addressing the interpretability limitations of the machine learning model. The explainable graph neural network is expected to provide more reliable information about helpful or non-helpful reviews as it can identify connections between reviews.

Research on Designing Korean Emotional Dictionary using Intelligent Natural Language Crawling System in SNS (SNS대상의 지능형 자연어 수집, 처리 시스템 구현을 통한 한국형 감성사전 구축에 관한 연구)

  • Lee, Jong-Hwa
    • The Journal of Information Systems
    • /
    • v.29 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • Purpose The research was studied the hierarchical Hangul emotion index by organizing all the emotions which SNS users are thinking. As a preliminary study by the researcher, the English-based Plutchick (1980)'s emotional standard was reinterpreted in Korean, and a hashtag with implicit meaning on SNS was studied. To build a multidimensional emotion dictionary and classify three-dimensional emotions, an emotion seed was selected for the composition of seven emotion sets, and an emotion word dictionary was constructed by collecting SNS hashtags derived from each emotion seed. We also want to explore the priority of each Hangul emotion index. Design/methodology/approach In the process of transforming the matrix through the vector process of words constituting the sentence, weights were extracted using TF-IDF (Term Frequency Inverse Document Frequency), and the dimension reduction technique of the matrix in the emotion set was NMF (Nonnegative Matrix Factorization) algorithm. The emotional dimension was solved by using the characteristic value of the emotional word. The cosine distance algorithm was used to measure the distance between vectors by measuring the similarity of emotion words in the emotion set. Findings Customer needs analysis is a force to read changes in emotions, and Korean emotion word research is the customer's needs. In addition, the ranking of the emotion words within the emotion set will be a special criterion for reading the depth of the emotion. The sentiment index study of this research believes that by providing companies with effective information for emotional marketing, new business opportunities will be expanded and valued. In addition, if the emotion dictionary is eventually connected to the emotional DNA of the product, it will be possible to define the "emotional DNA", which is a set of emotions that the product should have.

Movie Box-office Analysis using Social Big Data (소셜 빅데이터를 이용한 영화 흥행 요인 분석)

  • Lee, O-Joun;Park, Seung-Bo;Chung, Daul;You, Eun-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.10
    • /
    • pp.527-538
    • /
    • 2014
  • The demand prediction is a critical issue for the film industry. As the social media, such as Twitter and Facebook, gains momentum of late, considerable efforts are being dedicated to prediction and analysis of hit movies based on unstructured text data. For prediction of trends found in commercially successful films, the correlations between the amount of data and hit movies may be analyzed by estimating the data variation by period while opinion mining that assigns sentiment polarity score to data may be employed. However, it is not possible to understand why the audience chooses a certain movie or which attribute of a movie is preferred by using such a quantitative approach. This has limited the efforts to identify factors driving a movie's commercial success. In this regard, this study aims to investigate a movie's attributes that reflect the interests of the audience. This would be done by extracting topic keywords that represent the contents of Twits through frequency measurement based on the collected Twitter data while analyzing responses displayed by the audience. The objective is to propose factors driving a movie's commercial success.

User Experience Analysis and Management Based on Text Mining: A Smart Speaker Case (텍스트 마이닝 기반 사용자 경험 분석 및 관리: 스마트 스피커 사례)

  • Dine Yeon;Gayeon Park;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.77-99
    • /
    • 2020
  • Smart speaker is a device that provides an interactive voice-based service that can search and use various information and contents such as music, calendar, weather, and merchandise using artificial intelligence. Since AI technology provides more sophisticated and optimized services to users by accumulating data, early smart speaker manufacturers tried to build a platform through aggressive marketing. However, the frequency of using smart speakers is less than once a month, accounting for more than one third of the total, and user satisfaction is only 49%. Accordingly, the necessity of strengthening the user experience of smart speakers has emerged in order to acquire a large number of users and to enable continuous use. Therefore, this study analyzes the user experience of the smart speaker and proposes a method for enhancing the user experience of the smart speaker. Based on the analysis results in two stages, we propose ways to enhance the user experience of smart speakers by model. The existing research on the user experience of the smart speaker was mainly conducted by survey and interview-based research, whereas this study collected the actual review data written by the user. Also, this study interpreted the analysis result based on the smart speaker user experience dimension. There is an academic significance in interpreting the text mining results by developing the smart speaker user experience dimension. Based on the results of this study, we can suggest strategies for enhancing the user experience to smart speaker manufacturers.