• Title/Summary/Keyword: Text sentiment analysis

Search Result 241, Processing Time 0.026 seconds

An Exploratory Study of Happiness and Unhappiness Among Koreans based on Text Mining Techniques (텍스트마이닝 기법을 활용한 한국인의 행복과 불행 탐색연구)

  • Park, Sanghyeon;Do, Kanghyuk;Kim, Hakyeong;Park, Gaeun;Yun, Jinhyeok;Kim, Kyungil
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.10-27
    • /
    • 2018
  • The purpose of this study is to explore the meaning of happiness and unhappiness in Korean society through text mining analysis. Similar words with keywords(happiness/unhappiness) from online news portal are extracted using Word2Vec and TF-IDF method. We also use the K-LIWC dictionary to perform the sentiment analysis of words associated with happiness and unhappiness. In TF-IDF analysis, happiness and unhappiness are highly related to social factors and social issues of the year. In Word2Vec analysis, 'Hope' has been similar with happiness for six years. In K-LIWC analysis, 'money/financial issues', 'school', 'communication' is highly related with happiness and unhappiness. In addition, 'physical condition and symptom' is highly related to unhappiness. Implications, limitations, and suggestions for future research are also discussed.

Sentiment Analysis of Elderly and Job in the Demographic Cliff (인구절벽사회에서 노인과 일자리 감성분석)

  • Kim, Yang-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.110-118
    • /
    • 2020
  • Social media data serves as a proxy indicator to understand the problems and the future of public opinion in Korean society. This research used 109,015 news data from 2016 to 2018 to analyze the sensitivity of the elderly and employment in Korean society, and explored the possibility of expanding the labor force in Korean society, which is facing a cliff between the elderly and the population. Topic keywords for employment of the elderly include "elderly*employment", "elderly*employment", and "elderly*wage". As a result of the analysis, positive sensitivity prevails for most of the period, and it is possible to expand the working-age population. Positive feelings about expanding employment opportunities for the elderly and negative feelings about low wages have brought to light the reality of the elderly who are still poor despite their work. In this study, social big data was used to analyze the perceptions and sensibilities of Korean society related to the elderly and employment through hierarchical crowd analysis and related text mining analysis.

Multi-Dimensional Analysis Method of Product Reviews for Market Insight (마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안)

  • Park, Jeong Hyun;Lee, Seo Ho;Lim, Gyu Jin;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.57-78
    • /
    • 2020
  • With the development of the Internet, consumers have had an opportunity to check product information easily through E-Commerce. Product reviews used in the process of purchasing goods are based on user experience, allowing consumers to engage as producers of information as well as refer to information. This can be a way to increase the efficiency of purchasing decisions from the perspective of consumers, and from the seller's point of view, it can help develop products and strengthen their competitiveness. However, it takes a lot of time and effort to understand the overall assessment and assessment dimensions of the products that I think are important in reading the vast amount of product reviews offered by E-Commerce for the products consumers want to compare. This is because product reviews are unstructured information and it is difficult to read sentiment of reviews and assessment dimension immediately. For example, consumers who want to purchase a laptop would like to check the assessment of comparative products at each dimension, such as performance, weight, delivery, speed, and design. Therefore, in this paper, we would like to propose a method to automatically generate multi-dimensional product assessment scores in product reviews that we would like to compare. The methods presented in this study consist largely of two phases. One is the pre-preparation phase and the second is the individual product scoring phase. In the pre-preparation phase, a dimensioned classification model and a sentiment analysis model are created based on a review of the large category product group review. By combining word embedding and association analysis, the dimensioned classification model complements the limitation that word embedding methods for finding relevance between dimensions and words in existing studies see only the distance of words in sentences. Sentiment analysis models generate CNN models by organizing learning data tagged with positives and negatives on a phrase unit for accurate polarity detection. Through this, the individual product scoring phase applies the models pre-prepared for the phrase unit review. Multi-dimensional assessment scores can be obtained by aggregating them by assessment dimension according to the proportion of reviews organized like this, which are grouped among those that are judged to describe a specific dimension for each phrase. In the experiment of this paper, approximately 260,000 reviews of the large category product group are collected to form a dimensioned classification model and a sentiment analysis model. In addition, reviews of the laptops of S and L companies selling at E-Commerce are collected and used as experimental data, respectively. The dimensioned classification model classified individual product reviews broken down into phrases into six assessment dimensions and combined the existing word embedding method with an association analysis indicating frequency between words and dimensions. As a result of combining word embedding and association analysis, the accuracy of the model increased by 13.7%. The sentiment analysis models could be seen to closely analyze the assessment when they were taught in a phrase unit rather than in sentences. As a result, it was confirmed that the accuracy was 29.4% higher than the sentence-based model. Through this study, both sellers and consumers can expect efficient decision making in purchasing and product development, given that they can make multi-dimensional comparisons of products. In addition, text reviews, which are unstructured data, were transformed into objective values such as frequency and morpheme, and they were analysed together using word embedding and association analysis to improve the objectivity aspects of more precise multi-dimensional analysis and research. This will be an attractive analysis model in terms of not only enabling more effective service deployment during the evolving E-Commerce market and fierce competition, but also satisfying both customers.

Deep Learning-based Target Masking Scheme for Understanding Meaning of Newly Coined Words

  • Nam, Gun-Min;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.157-165
    • /
    • 2021
  • Recently, studies using deep learning to analyze a large amount of text are being actively conducted. In particular, a pre-trained language model that applies the learning results of a large amount of text to the analysis of a specific domain text is attracting attention. Among various pre-trained language models, BERT(Bidirectional Encoder Representations from Transformers)-based model is the most widely used. Recently, research to improve the performance of analysis is being conducted through further pre-training using BERT's MLM(Masked Language Model). However, the traditional MLM has difficulties in clearly understands the meaning of sentences containing new words such as newly coined words. Therefore, in this study, we newly propose NTM(Newly coined words Target Masking), which performs masking only on new words. As a result of analyzing about 700,000 movie reviews of portal 'N' by applying the proposed methodology, it was confirmed that the proposed NTM showed superior performance in terms of accuracy of sensitivity analysis compared to the existing random masking.

Privacy Concerns of Smart Speaker Users in South Korea: A Text-mining Analysis

  • Hong Joo Lee;Guglielmo Maccario;Maurizio Naldi
    • Asia pacific journal of information systems
    • /
    • v.33 no.4
    • /
    • pp.999-1015
    • /
    • 2023
  • Smart speakers represent a growing product in home electronics. However, their capability to record voices in their immediate surroundings has spurred concerns about privacy violations. In this paper, we assess the extent of those concerns in the opinions of smart speaker users by examining the reviews posted by smart speaker users. We focus on South Korea as a representative of advanced Asian economies. The results show that Korean smart speaker users are either unconcerned or unaware of privacy issues, confirming the results of previous studies about UK users, but with an even lower degree of interest in the topic. However, for the few users concerned about privacy, their attitude towards privacy influences their overall opinion about smart speakers.

Sentiment Analyses of the Impacts of Online Experience Subjectivity on Customer Satisfaction (감성분석을 이용한 온라인 체험 내 비정형데이터의 주관도가 고객만족에 미치는 영향 분석)

  • Yeeun Seo;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.233-255
    • /
    • 2023
  • The development of information technology(IT) has brought so-called "online experience" to satisfy our daily needs. The market for online experiences grew more during the COVID-19 pandemic. Therefore, this study attempted to analyze how the features of online experience services affect customer satisfaction by crawling structured and unstructured data from the online experience web site newly launched by Airbnb after COVID-19. As a result of the analysis, it was found that the structured data generated by service users on a C2C online sharing platform had a positive effect on the satisfaction of other users. In addition, unstructured text data such as experience introductions and host introductions generated by service providers turned out to have different subjectivity scores depending on the purpose of its text. It was confirmed that the subjective host introduction and the objective experience introduction affect customer satisfaction positively. The results of this study are to provide various implications to stakeholders of the online sharing economy platform and researchers interested in online experience knowledge management.

Positioning of Smart Speakers by Applying Text Mining to Consumer Reviews: Focusing on Artificial Intelligence Factors (텍스트 마이닝을 활용한 스마트 스피커 제품의 포지셔닝: 인공지능 속성을 중심으로)

  • Lee, Jung Hyeon;Seon, Hyung Joo;Lee, Hong Joo
    • Knowledge Management Research
    • /
    • v.21 no.1
    • /
    • pp.197-210
    • /
    • 2020
  • The smart speaker includes an AI assistant function in the existing portable speaker, which enables a person to give various commands using a voice and provides various offline services associated with control of a connected device. The speed of domestic distribution is also increasing, and the functions and linked services available through smart speakers are expanding to shopping and food orders. Through text mining-based customer review analysis, there have been many proposals for identifying the impact on customer attitudes, sentiment analysis, and product evaluation of product functions and attributes. Emotional investigation has been performed by extracting words corresponding to characteristics or features from product reviews and analyzing the impact on assessment. After obtaining the topic from the review, the effect on the evaluation was analyzed. And the market competition of similar products was visualized. Also, a study was conducted to analyze the reviews of smart speaker users through text mining and to identify the main attributes, emotional sensitivity analysis, and the effects of artificial intelligence attributes on product satisfaction. The purpose of this study is to collect blog posts about the user's experiences of smart speakers released in Korea and to analyze the attitudes of customers according to their attributes. Through this, customers' attitudes can be identified and visualized by each smart speaker product, and the positioning map of the product was derived based on customer recognition of smart speaker products by collecting the information identified by each property.

Text Mining Analysis of Customer Reviews on Public Service Robots: With a focus on the Guide Robot Cases (텍스트 마이닝을 활용한 공공기관 서비스 로봇에 대한 사용자 리뷰 분석 : 안내로봇 사례를 중심으로)

  • Hyorim Shin;Junho Choi;Changhoon Oh
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.787-797
    • /
    • 2023
  • The use of service robots, particularly guide robots, is becoming increasingly prevalent in public institutions. However, there has been limited research into the interactions between users and guide robots. To explore the customer experience with the guidance robot, we selected 'QI', which has been meeting customers for the longest time, and collected all reviews since the service was launched in public institutions. By using text mining techniques, we identified the main keywords and user experience factors and examined factors that hinder user experience. As a result, the guide robot's functionality, appearance, interaction methods, and role as a cultural commentator and helper were key factors that influenced the user experience. After identifying hindrance factors, we suggested solutions such as improved interaction design, multimodal interface service design, and content development. This study contributes to the understanding of user experience with guide robots and provides practical suggestions for improvement.

Stock Market Prediction Using Sentiment on YouTube Channels (유튜브 주식채널의 감성을 활용한 코스피 수익률 등락 예측)

  • Su-Ji, Cho;Cheol-Won Yang;Ki-Kwang Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.102-108
    • /
    • 2023
  • Recently in Korea, YouTube stock channels increased rapidly due to the high social interest in the stock market during the COVID-19 period. Accordingly, the role of new media channels such as YouTube is attracting attention in the process of generating and disseminating market information. Nevertheless, prior studies on the market forecasting power of YouTube stock channels remain insignificant. In this study, the market forecasting power of the information from the YouTube stock channel was examined and compared with traditional news media. To measure information from each YouTube stock channel and news media, positive and negative opinions were extracted. As a result of the analysis, opinion in channels operated by media outlets were found to be leading indicators of KOSPI market returns among YouTube stock channels. The prediction accuracy by using logistic regression model show 74%. On the other hand, Sampro TV, a popular YouTube stock channel, and the traditional news media simply reported the market situation of the day or instead showed a tendency to lag behind the market. This study is differentiated from previous studies in that it verified the market predictive power of the information provided by the YouTube stock channel, which has recently shown a growing trend in Korea. In the future, the results of advanced analysis can be confirmed by expanding the research results for individual stocks.

Fintech Trends and Mobile Payment Service Anlaysis in Korea: Application of Text Mining Techniques (국내 핀테크 동향 및 모바일 결제 서비스 분석: 텍스트 마이닝 기법 활용)

  • An, JungKook;Lee, So-Hyun;An, Eun-Hee;Kim, Hee-Woong
    • Informatization Policy
    • /
    • v.23 no.3
    • /
    • pp.26-42
    • /
    • 2016
  • Recently, with the rapid growth of the O2O market, Fintech combining the finance and ICT technology is drawing attention as innovation to lead "O2O of finance", along with Fintech-based payment, authentication, security technology and related services. For new technology industries such as Fintech, technical sources, related systems and regulations are important but previous studies on Fintech lack in-depth research about systems and technological trends of the domestic Fintech industry. Therefore, this study aims to analyze domestic Fintech trends and find the insights for the direction of technology and systems of the future domestic Fintech industry by comparing Kakao Pay and Samsung Pay, the two domestic representative mobile payment services. By conducting a complete enumeration survey about the tweets mentioning Fintech until June 2016, this study visualized topics extraction, sensitivity analysis and keyword analyses. According to the analysis results, it was found that various topics have been created in the technologies and systems between 2014 and 2016 and different keywords and reactions were extracted between topics of Samsung Pay based on "devices" such as Galaxy and Kakao Pay based on "service" such as KakaoTalk. This study contributes to analyzing the unstructured data of social media by period by using social media mining and quantifying the expectations and reactions of consumers to services through the sentiment analysis. It is expected to be the foundation of Fintech industry development by presenting a strategic direction to Fintech related practitioners.