• 제목/요약/키워드: Text ranking algorithm

검색결과 15건 처리시간 0.037초

Performance Evaluations of Text Ranking Algorithms

  • Kim, Myung-Hwi;Jang, Beakcheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.123-131
    • /
    • 2020
  • 텍스트 순위 알고리즘은 키워드 추출을 위한 대표적인 방법이며 그 중요성이 강조되고 있다. 본 논문에서는 텍스트 랭킹 알고리즘에서 대표적으로 사용되는 TF-IDF, SMART, INQUERY, CCA 알고리즘이 적용된 최근 연구와 실험해비교한다. 먼저, 각 알고리즘을 설명한 후 뉴스와 트위터 데이터를 기반으로 알고리즘의 성능을 분석한다. 실험 결과에 따르면 네 가지 알고리즘 모두 뉴스 데이터에서 특정 단어의 추출 성능이 좋다는 것을 알 수 있다. 그러나 Twitter의 경우 CCA는 특정 단어를 추출하는 최고의 성능을 가지며 INQUERY는 가장 낮은 성능을 보여준다. 또한 6 가지 비교 메트릭을 통해 알고리즘의 정확성을 분석한다. 실험 결과 CCA가 뉴스 데이터에서 최고의 정확도를 보여주고, 트위터의 경우 TF-IDF와 CCA는 비슷한 성능을 보이며 높은 정확도를 보인다.

문장 수반 관계를 고려한 문서 요약 (Document Summarization Considering Entailment Relation between Sentences)

  • 권영대;김누리;이지형
    • 정보과학회 논문지
    • /
    • 제44권2호
    • /
    • pp.179-185
    • /
    • 2017
  • 문서의 요약은 요약문 내의 문장들끼리 서로 연관성 있게 이어져야 하고 하나의 짜임새 있는 글이 되어야 한다. 본 논문에서는 위의 목적을 달성하기 위해 문장 간의 유사도와 수반 관계(Entailment)를 고려하여 문서 내에서 연관성이 크고 의미, 개념적인 연결성이 높은 문장들을 추출할 수 있도록 하였다. 본 논문에서는 Recurrent Neural Network 기반의 문장 관계 추론 모델과 그래프 기반의 랭킹(Graph-based ranking) 알고리즘을 혼합하여 단일 문서 추출요약 작업에 적용한 새로운 알고리즘인 TextRank-NLI를 제안한다. 새로운 알고리즘의 성능을 평가하기 위해 기존의 문서요약 알고리즘인 TextRank와 동일한 데이터 셋을 사용하여 성능을 비교 분석하였으며 기존의 알고리즘보다 약 2.3% 더 나은 성능을 보이는 것을 확인하였다.

Analysis and Improvement of Ranking Algorithm for Web Mining System on the Hierarchical Web Environment

  • Heebyung Yoon;Lee, Kil-Seup;Kim, Hwa-Soo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.455-458
    • /
    • 2003
  • The variety of document ranking algorithms have developed to provide efficient mining results for user's query on the web environment. The typical ranking algorithms are the Vector-Space Model based on the text, PsgeRank and HITS algorithms based on the hyperlink structures and other several improvement algorithms. All these are for the user's convenience and preference. However, these algorithms are usually developed on then Horizontal and non-hierarchial web environments and are not suitable for the hierarchial web environments such as enterprise and defense networks. Thus, we must consider the special environment factors in order to improve the ranking algorithms. In this paper, we analyze the several typical algorithms used by hyperlink structures on the web environment. We, then suggest a configuration of the hierarchical web environment and also give the relations between agents of the web mining system. Next, we propose an improved ranking algorithm suitable to this kind of special environments. The proposed algorithm is considered both the hyperlink structures of the documents and the location of the user of the hierarchical web.

  • PDF

TextRank를 이용한 키워드 정련 -TextRank를 이용한 집단 지성에서 생성된 콘텐츠의 키워드 정련- (Keywords Refinement using TextRank Algorithm)

  • 이현우;한요섭;김래현;차정원
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.285-289
    • /
    • 2009
  • 태그는 콘텐츠를 대표하는 신뢰도가 높은 키워드이다. 하지만 일부 기업과 사람들이 콘텐츠와 관련이 없는 키워드를 태그로 사용하여 본 논문에서는 무분별하게 사용된 키워드를 정련하는 알고리듬을 제안한다. 키워드 정련과 관련된 연구는 진행되지 않았지만, 본 논문에서는 단어와 단어사이에 가상의 링크를 생성, TextRank 알고리듬을 적용하여 콘텐츠에서 단어의 중요도를 계산하여 중요도가 낮은 단어의 일부를 콘텐츠의 제작자가 작성한 키워드에서 제거하여 키워드 정련을 하였다. 그 결과, 단순히 단어의 중요도가 낮은 하위 n%의 단어를 제거하는 방법보다는 신뢰도 구간을 만족할 때까지 제거하는 방법이 훨씬 좋은 키워드 정련 결과를 보였다.

  • PDF

TextRank 알고리즘을 이용한 문서 범주화 (Text Categorization Using TextRank Algorithm)

  • 배원식;차정원
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권1호
    • /
    • pp.110-114
    • /
    • 2010
  • 본 논문에서는 TextRank 알고리즘을 이용한 문서 범주화 방법에 대해 기술한다. TextRank 알고리즘은 그래프 기반의 순위화 알고리즘이다. 문서에서 나타나는 각각의 단어를 노드로, 단어들 사이의 동시출현성을 이용하여 간선을 만들면 문서로부터 그래프를 생성할 수 있다. TextRank 알고리즘을 이용하여 생성된 그래프로부터 중요도가 높은 단어를 선택하고, 그 단어와 인접한 단어를 묶어 하나의 자질로 사용하여 문서 분류를 수행하였다. 동시출현 자질(인접한 단어 쌍)은 단어 하나가 갖는 의미를 보다 명확하게 만들어주므로 문서 분류에 좋은 자질로 사용될 수 있을 것이라 가정하였다. 문서 분류기로는 지지 벡터 기계, 베이지언 분류기, 최대 엔트로피 모델, k-NN 분류기 등을 사용하였다. 20 Newsgroups 문서 집합을 사용한 실험에서 모든 분류기에서 제안된 방법을 사용했을 때, 문서 분류 성능이 향상된 결과를 확인할 수 있었다.

BERT 기반 의미론적 검색을 활용한 관광지 순위 시스템 개발 (Development of a Ranking System for Tourist Destination Using BERT-based Semantic Search)

  • 이강우;김명선;홍순구;노수경
    • 한국산업정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.91-103
    • /
    • 2024
  • 본 연구의 목적은 시맨틱 검색 기법을 활용하여 사용자 쿼리 기반의 타당한 정확도를 가진 관광지 랭킹시스템을 설계하는 것이다. 이를 위해 관광지에 대한 텍스트 리뷰 데이터 수집, 데이터 전처리 및 SBERT를 활용한 임베딩 과정을 거쳤다. 이후 유사도를 측정하고 임계값을 충족하는 데이터를 필터링한 후 카운트 기반 랭킹 알고리즘을 적용하여 쿼리와 의미적으로 유사한 순서로 관광지 순위를 도출하였다. 제안된 랭킹 알고리즘의 평가를 위해 4개의 쿼리로 실험을 진행하여 연관성이 높은 상위 5개 관광지를 도출하였다. 도출된 결과값의 비교를 위해 58,175개의 문장에 직접 라벨을 붙여 세 번째 쿼리인 혼잡도와 의미적으로 연관성이 있는지를 확인하였다. 두 결과값이 유사하여 본 연구에서 제시된 랭킹 알고리즘의 효율성이 검증되었다. 임계값 최적화, 데이터 불균형 등의 문제에도 불구하고 이 연구는 시맨틱 검색 기법을 이용하여 적은 비용과 시간으로도 사용자의 의도를 파악하여 관광지를 추천하는 것이 가능하다는 것을 보여주었다.

단어 간 의미적 연관성을 고려한 어휘 체인 기반의 개선된 자동 문서요약 방법 (An Improved Automatic Text Summarization Based on Lexical Chaining Using Semantical Word Relatedness)

  • 차준석;김정인;김판구
    • 스마트미디어저널
    • /
    • 제6권1호
    • /
    • pp.22-29
    • /
    • 2017
  • 최근 스마트 디바이스의 급속한 발달과 보급으로 인하여 인터넷 웹상에서 등장하는 문서의 데이터는 하루가 다르게 증가 하고 있다. 이러한 정보의 증가로 인터넷 웹상에서는 대량의 문서가 증가하여 사용자가 해당 문서의 데이터를 이해하는데, 어려움을 겪고 있다. 그렇기 때문에 자동 문서 요약 분야에서 문서를 효율적으로 요악하기 위해 다양한 연구가 진행 되고 있다. 효율적으로 문서를 요약하기 위해 본 논문에서는 텍스트랭크 알고리즘을 이용한다. 텍스트랭크 알고리즘은 문장 또는 키워드를 그래프로 표현하며, 단어와 문장 간의 의미적 연관성을 파악하기 위해 그래프의 정점과 간선을 이용하여 문장의 중요도를 파악한다. 문장의 상위 키워드를 추출 하고 상위 키워드를 기반으로 중요 문장 추출 과정을 거친다. 중요 문장 추출 과정을 거치기 위해 단어 그룹화 과정을 거친다. 단어그룹화는 특정 가중치 척도를 이용하여 가중치 점수가 높은 문장을 선별하여 선별된 문장들을 기반으로 중요 문장을 중요 문장을 추출하여, 문서를 요약을 하게 된다. 이를 통해 기존에 연구 되었던 문서요약 방법보다 향상된 성능을 보였으며, 더욱 효율적으로 문서를 요약할 수 있음을 증명하였다.

메타데이터 기반 순위 알고리즘을 활용한 데이터셋 검색 시스템 (Dataset Search System Using Metadata-Based Ranking Algorithm)

  • 최우영;전종훈
    • 방송공학회논문지
    • /
    • 제27권4호
    • /
    • pp.581-592
    • /
    • 2022
  • 최근 빅데이터 활용에 대한 요구사항이 증대됨에 따라 데이터 분석에 필요한 데이터셋 검색 기술에 관한 관심 또한 늘어나고 있다. 데이터셋 검색을 위해서는 일반 문서 검색과는 달리 데이터셋에 대한 메타데이터에 대한 활용도를 높여야 함에도 불구하고 이를 적극적으로 활용하는 검색 시스템에 관한 연구는 미미한 실정이다. 본 논문에서는 데이터셋의 메타데이터를 색인하고 이를 기반으로 데이터셋 검색을 수행하는 새로운 데이터셋 전용 검색 시스템을 제안한다. 데이터셋 검색결과에 부여하는 순위는 데이터셋 고유의 특성을 반영한 알고리즘을 새로이 고안하여 적용하며, 분석에 필요한 융합 가능한 데이터셋 여러 건을 한꺼번에 검색할 수 있도록 원천 질의에 의해 검색된 데이터셋과 연관 관계에 있는 추가 데이터셋을 검색하는 기능을 제공한다.

오피니언 마이닝 알고리즘 기반 음성인식 인터뷰 모델의 설계 및 구현 (Design And Implementation of a Speech Recognition Interview Model based-on Opinion Mining Algorithm)

  • 김규호;김희민;이기영;임명재;김정래
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.225-230
    • /
    • 2012
  • 오피니언 마이닝은 기존의 데이터 마이닝 기술을 활용하여 웹 상에 개재된 블로그, 상품평등에 나타난 저자의 의견을 추출하는 분야로써 텍스트의 주제를 판단하는 것이 아닌 주제에 대한 저자의 태도를 판단하는 기술이다. 본 논문에서는 오피니언 마이닝 알고리즘과 공개된 음성인식 API을 사용하여 텍스트가 아닌 음성의 대한 데이터의 감정을 판단하기 위해 제안했다. 이 시스템은 공개된 Google Voice Recognition API와 주제어와 관련된 순위화 알고리즘, 개선된 극성 판단 알고리즘을 통하여 설계하고, 이를 바탕으로 음성인식 인터뷰 모델을 구현한다.

SNS대상의 지능형 자연어 수집, 처리 시스템 구현을 통한 한국형 감성사전 구축에 관한 연구 (Research on Designing Korean Emotional Dictionary using Intelligent Natural Language Crawling System in SNS)

  • 이종화
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권3호
    • /
    • pp.237-251
    • /
    • 2020
  • Purpose The research was studied the hierarchical Hangul emotion index by organizing all the emotions which SNS users are thinking. As a preliminary study by the researcher, the English-based Plutchick (1980)'s emotional standard was reinterpreted in Korean, and a hashtag with implicit meaning on SNS was studied. To build a multidimensional emotion dictionary and classify three-dimensional emotions, an emotion seed was selected for the composition of seven emotion sets, and an emotion word dictionary was constructed by collecting SNS hashtags derived from each emotion seed. We also want to explore the priority of each Hangul emotion index. Design/methodology/approach In the process of transforming the matrix through the vector process of words constituting the sentence, weights were extracted using TF-IDF (Term Frequency Inverse Document Frequency), and the dimension reduction technique of the matrix in the emotion set was NMF (Nonnegative Matrix Factorization) algorithm. The emotional dimension was solved by using the characteristic value of the emotional word. The cosine distance algorithm was used to measure the distance between vectors by measuring the similarity of emotion words in the emotion set. Findings Customer needs analysis is a force to read changes in emotions, and Korean emotion word research is the customer's needs. In addition, the ranking of the emotion words within the emotion set will be a special criterion for reading the depth of the emotion. The sentiment index study of this research believes that by providing companies with effective information for emotional marketing, new business opportunities will be expanded and valued. In addition, if the emotion dictionary is eventually connected to the emotional DNA of the product, it will be possible to define the "emotional DNA", which is a set of emotions that the product should have.