• Title/Summary/Keyword: Text information

Search Result 4,417, Processing Time 0.035 seconds

An Analysis of Collaborative Visualization Processing of Text Information for Developing e-Learning Contents

  • SUNG, Eunmo
    • Educational Technology International
    • /
    • v.10 no.1
    • /
    • pp.25-40
    • /
    • 2009
  • The purpose of this study was to explore procedures and modalities on collaborative visualization processing of text information for developing e-Learning contents. In order to investigate, two research questions were explored: 1) what are procedures on collaborative visualization processing of text information, 2) what kinds of patterns and modalities can be found in each procedure of collaborative visualization of text information. This research method was employed a qualitative research approaches by means of grounded theory. As a result of this research, collaborative visualization processing of text information were emerged six steps: identifying text, analyzing text, exploring visual clues, creating visuals, discussing visuals, elaborating visuals, and creating visuals. Collaborative visualization processing of text information came out the characteristic of systemic and systematic system like spiral sequencing. Also, another result of this study, modalities in collaborative visualization processing of text information was divided two dimensions: individual processing by internal representation, social processing by external representation. This case study suggested that collaborative visualization strategy has full possibility of providing ideal methods for sharing cognitive system or thinking system as using human visual intelligence.

Implementation of Information Retrieval System for Full-Text (전문에 대한 검색시스템의 구현)

  • 김대규;정희택;강영만;한순희;조혁현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.337-340
    • /
    • 2000
  • Using the Information Retrieval systems on the Internet, the demand of exact and specific information has also been popularized. To offer exact information, there k3 been generalized demand of searching from the keyword of the shortened text and also of the full-text. This study is to suggest a scheme for full-text searches. It is to compare the existing scheme of information search and full-text information search with interMedia text. We suggest search methods for the full-text.

  • PDF

Applications of the Text Mining Approach to Online Financial Information

  • Hansol Lee;Juyoung Kang;Sangun Park
    • Asia pacific journal of information systems
    • /
    • v.32 no.4
    • /
    • pp.770-802
    • /
    • 2022
  • With the development of deep learning techniques, text mining is producing breakthrough performance improvements, promising future applications, and practical use cases across many fields. Likewise, even though several attempts have been made in the field of financial information, few cases apply the current technological trends. Recently, companies and government agencies have attempted to conduct research and apply text mining in the field of financial information. First, in this study, we investigate various works using text mining to show what studies have been conducted in the financial sector. Second, to broaden the view of financial application, we provide a description of several text mining techniques that can be used in the field of financial information and summarize various paradigms in which these technologies can be applied. Third, we also provide practical cases for applying the latest text mining techniques in the field of financial information to provide more tangible guidance for those who will use text mining techniques in finance. Lastly, we propose potential future research topics in the field of financial information and present the research methods and utilization plans. This study can motivate researchers studying financial issues to use text mining techniques to gain new insights and improve their work from the rich information hidden in text data.

Automatic Superimposed Text Localization from Video Using Temporal Information

  • Jung, Cheol-Kon;Kim, Joong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.834-839
    • /
    • 2007
  • The superimposed text in video brings important semantic clues into content analysis. In this paper, we present the new and fast superimposed text localization method in video segments. We detect the superimposed text by using temporal information contained in the video. To detect the superimposed text fast, we have minimized the candidate region of localizing superimposed texts by using the difference between consecutive frames. Experimental results are presented to demonstrate the good performance of the new superimposed text localization algorithm.

Real Scene Text Image Super-Resolution Based on Multi-Scale and Attention Fusion

  • Xinhua Lu;Haihai Wei;Li Ma;Qingji Xue;Yonghui Fu
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.427-438
    • /
    • 2023
  • Plenty of works have indicated that single image super-resolution (SISR) models relying on synthetic datasets are difficult to be applied to real scene text image super-resolution (STISR) for its more complex degradation. The up-to-date dataset for realistic STISR is called TextZoom, while the current methods trained on this dataset have not considered the effect of multi-scale features of text images. In this paper, a multi-scale and attention fusion model for realistic STISR is proposed. The multi-scale learning mechanism is introduced to acquire sophisticated feature representations of text images; The spatial and channel attentions are introduced to capture the local information and inter-channel interaction information of text images; At last, this paper designs a multi-scale residual attention module by skillfully fusing multi-scale learning and attention mechanisms. The experiments on TextZoom demonstrate that the model proposed increases scene text recognition's (ASTER) average recognition accuracy by 1.2% compared to text super-resolution network.

Biomedical Ontologies and Text Mining for Biomedicine and Healthcare: A Survey

  • Yoo, Ill-Hoi;Song, Min
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.2
    • /
    • pp.109-136
    • /
    • 2008
  • In this survey paper, we discuss biomedical ontologies and major text mining techniques applied to biomedicine and healthcare. Biomedical ontologies such as UMLS are currently being adopted in text mining approaches because they provide domain knowledge for text mining approaches. In addition, biomedical ontologies enable us to resolve many linguistic problems when text mining approaches handle biomedical literature. As the first example of text mining, document clustering is surveyed. Because a document set is normally multiple topic, text mining approaches use document clustering as a preprocessing step to group similar documents. Additionally, document clustering is able to inform the biomedical literature searches required for the practice of evidence-based medicine. We introduce Swanson's UnDiscovered Public Knowledge (UDPK) model to generate biomedical hypotheses from biomedical literature such as MEDLINE by discovering novel connections among logically-related biomedical concepts. Another important area of text mining is document classification. Document classification is a valuable tool for biomedical tasks that involve large amounts of text. We survey well-known classification techniques in biomedicine. As the last example of text mining in biomedicine and healthcare, we survey information extraction. Information extraction is the process of scanning text for information relevant to some interest, including extracting entities, relations, and events. We also address techniques and issues of evaluating text mining applications in biomedicine and healthcare.

A Novel Video Image Text Detection Method

  • Zhou, Lin;Ping, Xijian;Gao, Haolin;Xu, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.941-953
    • /
    • 2012
  • A novel and universal method of video image text detection is proposed. A coarse-to-fine text detection method is implemented. Firstly, the spectral clustering (SC) method is adopted to coarsely detect text regions based on the stationary wavelet transform (SWT). In order to make full use of the information, multi-parameters kernel function which combining the features similarity information and spatial adjacency information is employed in the SC method. Secondly, 28 dimension classifying features are proposed and support vector machine (SVM) is implemented to classify text regions with non-text regions. Experimental results on video images show the encouraging performance of the proposed algorithm and classifying features.

A Novel Video Image Text Detection Method

  • Zhou, Lin;Ping, Xijian;Gao, Haolin;Xu, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1140-1152
    • /
    • 2012
  • A novel and universal method of video image text detection is proposed. A coarse-to-fine text detection method is implemented. Firstly, the spectral clustering (SC) method is adopted to coarsely detect text regions based on the stationary wavelet transform (SWT). In order to make full use of the information, multi-parameters kernel function which combining the features similarity information and spatial adjacency information is employed in the SC method. Secondly, 28 dimension classifying features are proposed and support vector machine (SVM) is implemented to classify text regions with non-text regions. Experimental results on video images show the encouraging performance of the proposed algorithm and classifying features.

Integration of Text and Image Information of Interior Design (실내디자인의 문자 정보와 이미지 정보의 통합화에 관한 연구)

  • 이현수;정선영;오수영;고경진
    • Korean Institute of Interior Design Journal
    • /
    • no.26
    • /
    • pp.88-94
    • /
    • 2001
  • This paper explores idea of the integration of text and image information in interior design. In this paper, we designed a structure of text and image information. Text information includes the information about materials and projects, and image information includes images of interior design. Material information consists of such as name and price of materials. Image information involves images of interior design that have been scanned and categorized into 15 groups according to the building regulation. Project information consists of construction brief and materials relevant to the image of interior design. The interior design information that is based on cases offers various information to designer and customers. In addition, the connection between text information and image information improves the quality of interior design by decreasing the trial and error in interior design processes. Finally, we discuss the method that integrates text and image information of interior design.

  • PDF

A Method for Text Detection and Enhancement using Spatio-Temporal Information (시공간 정보를 이용한 자막 탐지 및 향상 기법)

  • Jeong, Jong-Myeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.43-50
    • /
    • 2009
  • Text information in a digital video provides crucial information to acquire semantic information of the video. In the proposed method. text candidate regions are extracted from input sequence by using characteristics of stroke and text candidate regions are localized by using projection to produce text bounding boxes. Bounding boxes containing text regions are verified geometrically and each bounding box existing same location is tracked by calculating matching measure. which is defined as the mean of absolute difference between bounding boxes in the current frame and previous frames. Finally. text regions are enhanced using temporal redundancy of bounding boxes to produce final results. Experimental results for various videos show the validity of the proposed method.