• Title/Summary/Keyword: Text data

Search Result 2,953, Processing Time 0.029 seconds

A Topic Modeling Approach to Marketing Strategies for Smartphone Companies (소셜미디어 토픽모델링을 통한 스마트폰 마케팅 전략 수립 지원)

  • Cha, Yoon-Jeong;Lee, Jee-Hye;Choi, Jee-Eun;Kim, Hee-Woong
    • Knowledge Management Research
    • /
    • v.16 no.4
    • /
    • pp.69-87
    • /
    • 2015
  • Given the huge number of data produced by its users, SNS is a great source of customer insights. Since viral trends in SNS reflect customers' direct feedback, companies can draw out highly meaningful business insights when such data is effectively analyzed and managed. However, while the importance of understanding SNS big data keeps growing, the methods for analyzing atypical data such as SNS postings for business insights over product has not been well studied. This study aims to demonstrate the way to exploit topic modeling method to support marketing strategy generation and therefore leverage business process. First, we conducted topic modeling analysis for twitter data of Apple and Samsung smartphones. Then we comparatively examined the analysis results to draw meaningful market insights about each smartphone product. Finally, we draw out a strategic marketing recommendation for each smartphone brand based on the findings.

A Proposal of Multimedia Retrieval System and XML Meta-data Modeling Techniques (XML 메타데이터 모델링기법과 멀티미디어 검색시스템의 제안)

  • 윤미희;조동욱
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.393-398
    • /
    • 2003
  • Video which contains the multiple data such as text, images, audio and motion of objects is typical multimedia data. Multimedia retrieval system using XML is essential for efficient rep. of multimedia data. Therefore, multimedia retrieval system for retrieval and structural understanding is needed to retrieve the multimedia data. This Paper Proposes the multimedia retrieval system based on XML Meta-data modeling techniques.

  • PDF

A Study of Construction of Character Image Data for Recognition Handwritten Text (필기체 문자 인식을 위한 문자 영상 데이터 구축에 관한 연구)

  • Lee, H.R.;Ko, K.C.;Lee, M.R.
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.63-67
    • /
    • 2000
  • In order to develop a character recognition system, it is an essential preceding work that gathers an image data of the standard. On this purpose a data of the digitized images of a handwritten characters was collected. The types of a gathered image data are Korean character, Chiness character, Numeral, English character, Special character, and so on. This paper deals with a handwritten character image data base, and the image data base different from the general storage structure of a lame capacity multimedia was designed and builded.

  • PDF

Towards Effective Entity Extraction of Scientific Documents using Discriminative Linguistic Features

  • Hwang, Sangwon;Hong, Jang-Eui;Nam, Young-Kwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1639-1658
    • /
    • 2019
  • Named entity recognition (NER) is an important technique for improving the performance of data mining and big data analytics. In previous studies, NER systems have been employed to identify named-entities using statistical methods based on prior information or linguistic features; however, such methods are limited in that they are unable to recognize unregistered or unlearned objects. In this paper, a method is proposed to extract objects, such as technologies, theories, or person names, by analyzing the collocation relationship between certain words that simultaneously appear around specific words in the abstracts of academic journals. The method is executed as follows. First, the data is preprocessed using data cleaning and sentence detection to separate the text into single sentences. Then, part-of-speech (POS) tagging is applied to the individual sentences. After this, the appearance and collocation information of the other POS tags is analyzed, excluding the entity candidates, such as nouns. Finally, an entity recognition model is created based on analyzing and classifying the information in the sentences.

A Study on Implementation of Safety Navigation Mobile Application Converging Marine Environment Information and Location-Based Service

  • Jeon, Joong-Sung
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.289-295
    • /
    • 2019
  • In this paper, we implemented a safety navigation mobile application that converged AtoN information and location-based services. When application user uses the smartphone's GPS sensor to transmit the user's vessel location data to the data server, the user receives information of which its providing range is considered, such as stored AtoN data, neighboring vessels information, danger area, and weather information in the server. Providing information is sorted based on the smartphone's direction and inclination and it will be also delivered via wireless network (5G, LTE, 3G, WiFi). Additionally the application is available to implement other functions such as information provision through voice and text alarming service when the user's vessel is either approaching or entering the danger area, and an expanded information provision service that is available in shadow area linking with data-storing methods; other linkable data such as weather and other neighboring vessels will be applied based on the lasted-saved data perceived from the non-shadow area.

Recent deep learning methods for tabular data

  • Yejin Hwang;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.215-226
    • /
    • 2023
  • Deep learning has made great strides in the field of unstructured data such as text, images, and audio. However, in the case of tabular data analysis, machine learning algorithms such as ensemble methods are still better than deep learning. To keep up with the performance of machine learning algorithms with good predictive power, several deep learning methods for tabular data have been proposed recently. In this paper, we review the latest deep learning models for tabular data and compare the performances of these models using several datasets. In addition, we also compare the latest boosting methods to these deep learning methods and suggest the guidelines to the users, who analyze tabular datasets. In regression, machine learning methods are better than deep learning methods. But for the classification problems, deep learning methods perform better than the machine learning methods in some cases.

Analysis Study on Trends of Library Development Plan by Using Big Data Analysis (빅데이터 분석 기법을 활용한 도서관발전종합계획 동향 분석 연구)

  • Kim, Dongseok;Noh, Younghee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.29 no.2
    • /
    • pp.85-108
    • /
    • 2018
  • This study aimed to analyze media reports of the Comprehensive Library Advancement Plan using big data analysis in order to determine trends and implications by period. To do so, related data from 2009 to 2017 were collected from major domestic web portal sites. Words in the collected data were refined through the text mining process and frequency, centrality, and structural equivalence analyses were performed. Results confirmed that, during the implementation of the first and the second phases of the Comprehensive Library Advancement Plan, the focus of the library policy changed from external growth to strengthening internal stability and advancement of library operation, and the media coverage were limited to specific policies such as expansion of library facilities. Findings from this study will serve as useful material for ascertaining the approach to perceive and understand the national library policy represented by the Comprehensive Library Advancement Plan.

Study on the social issue sentiment classification using text mining (텍스트마이닝을 이용한 사회 이슈 찬반 분류에 관한 연구)

  • Kang, Sun-A;Kim, Yoo Sin;Choi, Sang Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1167-1173
    • /
    • 2015
  • The development of information and communication technology like SNS, blogs, and bulletin boards, was provided a variety of places where you can express your thoughts and comments and allowing Big Data to grow, many people reveal the opinion of the social issues in SNS such as Twitter. In this study, we would like to pre-built sentimental dictionary about social issues and conduct a sentimental analysis with structured dictionary, to gather opinions on social issues that are created on twitter. The data that I used is "bikini", "nakkomsu" including tweet. As the result of analysis, precision is 61% and F1- score is 74%. This study expect to suggest the standard of dictionary construction allowing you to classify positive/negative opinion on specific social issues.

An Associative Search System for Mobile Life-log Semantic Networks based on Visualization (시각화 기반 모바일 라이프 로그 시맨틱 네트워크 연관 검색 시스템)

  • Oh, Keun-Hyun;Kim, Yong-Jun;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.727-731
    • /
    • 2010
  • Recently, mobile life-log data are collected by mobile devices and used to recode one's life. In order to help a user search data, a mobile life-log semantic network is introduced for storing logs and retrieving associative information. However, associative search systems on common semantic networks in previous studies provide for a user with only found data as text to users. This paper proposes an associative search system for mobile life-log semantic network that supports selection and keyword associative search of which a process and result are a visualized graph representing associative data and their relationships when a user inputs a keyword for search. In addition, by using semantic abstraction, the system improves user's understanding of search result and simplifies the resulting graph. The system's usability was tested by an experiment comparing the system and a text-based search system.

Implementation of SMIL Editor for Multimedia Broadcasting (멀티미디어 방송을 위한 SMIL 편집 시스템 구현)

  • 장대영;김창수;정회경
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.622-629
    • /
    • 2004
  • Recently, as digital broadcasting and internet are spreaded out of the world, we can easily use informations with less restrictions of time and space. According to the current trends, concerns for the ways of representing multimedia data has been rapidly increased, and users demand the services with integrated document that takes not only simple text and image but also time varying audio-visual data. Therefore, in 1998, W3C presented an international standard, SMIL in order to solve multimedia object representation and synchronization problems. By using SMIL, various multimedia elements can be integrated as a multimedia document with proper view in a space and time. Using this SMIL document, we can create new internet radio broadcasting service that delivers not only audio data but also various text, image and video. In this paper, we describe on a SMIL document editor for the common users to be able to represent time varying multimedia data with special layout and synchronization of time and space.