Journal of the Korean Society for information Management
/
v.35
no.1
/
pp.157-182
/
2018
As data management and processing techniques have been developed rapidly in the era of big data, nowadays a lot of business companies and researchers have been interested in long tail data which were ignored in the past. This study proposes methods for generating and controlling a network of technical terms based on text mining technique to enhance data utilization in the distribution of long tail theory. Especially, an edit distance technique of text mining has given us efficient methods to automatically create an interlinking network of technical terms in the scholarly field. We have also used linked open data system to gather experimental data to improve data utilization and proposed effective methods to use data of LOD systems and algorithm to recognize patterns of terms. Finally, the performance evaluation test of the network of technical terms has shown that the proposed methods were useful to enhance the rate of data utilization.
Journal of the Korean Institute of Intelligent Systems
/
v.23
no.5
/
pp.406-411
/
2013
Big data issue has been considered in diverse fields. Also, big data learning has been required in all areas such as engineering and social science. Statistics and machine learning algorithms are representative tools for big data learning. In this paper, we study learning tools for big data and propose an efficient methodology for big data learning via legacy data to practical application. We apply our big data learning to patent analysis, because patent is one of big data. Also, we use patent analysis result for technology forecasting. To illustrate how the proposed methodology could be applied in real domain, we will retrieve patents related to big data from patent databases in the world. Using searched patent data, we perform a case study by text mining preprocessing and multiple linear regression of statistics.
Machine learning (ML) is a method of fitting given data to a mathematical model to derive insights or to predict. In the age of big data, where the amount of available data increases exponentially due to the development of information technology and smart devices, ML shows high prediction performance due to pattern detection without bias. The feature engineering that generates the features that can explain the problem to be solved in the ML process has a great influence on the performance and its importance is continuously emphasized. Despite this importance, however, it is still considered a difficult task as it requires a thorough understanding of the domain characteristics as well as an understanding of source data and the iterative procedure. Therefore, we propose methods to apply deep learning for solving the complexity and difficulty of feature extraction and improving the performance of ML model. Unlike other techniques, the most common reason for the superior performance of deep learning techniques in complex unstructured data processing is that it is possible to extract features from the source data itself. In order to apply these advantages to the business problems, we propose deep learning based methods that can automatically extract features from transaction data or directly predict and classify target variables. In particular, we applied techniques that show high performance in existing text processing based on the structural similarity between transaction data and text data. And we also verified the suitability of each method according to the characteristics of transaction data. Through our study, it is possible not only to search for the possibility of automated feature extraction but also to obtain a benchmark model that shows a certain level of performance before performing the feature extraction task by a human. In addition, it is expected that it will be able to provide guidelines for choosing a suitable deep learning model based on the business problem and the data characteristics.
International journal of advanced smart convergence
/
v.12
no.1
/
pp.164-172
/
2023
In this study, we identify the recognition of 'The First Slam Dunk', which is gaining popularity as a sports-based cartoon through big data analysis of social media channels, and provide basic data for the development and development of various contents in the sports industry. Social media channels collected detailed social big data from news provided on Naver and Google sites. Data were collected from January 1, 2023 to February 15, 2023, referring to the release date of 'The First Slam Dunk' in Korea. The collected data were 2,106 Naver news data, and 1,019 Google news data were collected. TF and TF-IDF were analyzed through text mining for these data. Through this, semantic network analysis was conducted for 60 keywords. Big data analysis programs such as Textom and UCINET were used for social big data analysis, and NetDraw was used for visualization. As a result of the study, the keyword with the high frequency in relation to the subject in consideration of TF and TF-IDF appeared 4,079 times as 'The First Slam Dunk' was the keyword with the high frequency among the frequent keywords. Next are 'Slam Dunk', 'Movie', 'Premiere', 'Animation', 'Audience', and 'Box-Office'. Based on these results, 60 high-frequency appearing keywords were extracted. After that, semantic metrics and centrality analysis were conducted. Finally, a total of 6 clusters(competing movie, cartoon, passion, premiere, attention, Box-Office) were formed through CONCOR analysis. Based on this analysis of the semantic network of 'The First Slam Dunk', basic data on the development plan of sports content were provided.
Jo, Jun-Ha;Kim, Nam-Hee;Kwon, Ki-Ryong;Kim, Dong-Kyue
Journal of KIISE:Computer Systems and Theory
/
v.34
no.8
/
pp.319-326
/
2007
To perform fast searching in massive data such as DNA strings, the most efficient method is to construct full-text index data structures of given strings. The widely used full-text index structures are suffix trees and suffix arrays. Since the suffix may uses less space than the suffix tree, the suffix array is proper for DNA strings. Previously developed construction algorithms of suffix arrays are not suitable for DNA strings since those are designed for integer alphabets. We propose a fast algorithm to construct suffix arrays on DNA strings whose alphabet sizes are fixed by 4. We reduce the construction time by improving encoding and merging steps on Kim et al.[1]'s algorithm. Experimental results show that our algorithm constructs suffix arrays on DNA strings 1.3-1.6 times faster than Kim et al.'s algorithm, and also for other algorithms in most cases.
Journal of The Korean Association of Information Education
/
v.16
no.2
/
pp.255-263
/
2012
Early algorithm education is very important in order to nurture excellent S/W developers in an information society. However a algorithm learning is a great challenge to elementary school students since understanding what a computer algorithm written in a static text format meant to do is difficult. It is expected that a student can easily visualize a algorithm through animations. In this study, we evaluate the pedagogical effectiveness of algorithm visualizations in teaching the fundamental data structures and algorithms in elementary schools. Thus we defined a new measure called 'Algorithm Visualization Factor(AVF)' and developed both text-oriented and animation-oriented PPTs of algorithm education elements, that is, Stack, Queue, Bubble Sort, Heap Sort, BDF, and DFS. We have conducted experiments and evaluations on diverse students groups. Extensive experiment results show that the average score of the student groups using animation-orirented PPT is greater(22%) than the one of the student groups using text-orirented PPT.
Purpose: This study aimed to explore public opinion on workplace bullying in the nursing field, by analyzing the keywords and topics of online news comments. Methods: This was a text-mining study that collected, processed, and analyzed text data. A total of 89,951 comments on 650 online news articles, reported between January 1, 2013 and July 31, 2018, were collected via web crawling. The collected unstructured text data were preprocessed and keyword analysis and topic modeling were performed using R programming. Results: The 10 most important keywords were "work" (37121.7), "hospital" (25286.0), "patients" (24600.8), "woman" (24015.6), "physician" (20840.6), "trouble" (18539.4), "time" (17896.3), "money" (16379.9), "new nurses" (14056.8), and "salary" (13084.1). The 22,572 preprocessed key words were categorized into four topics: "poor working environment", "culture among women", "unfair oppression", and "society-level solutions". Conclusion: Public interest in workplace bullying among nurses has continued to increase. The public agreed that negative work environment and nursing shortage could cause workplace bullying. They also considered nurse bullying as a problem that should be resolved at a societal level. It is necessary to conduct further research through gender discrimination perspectives on nurse workplace bullying and the social value of nursing work.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.9
/
pp.6411-6418
/
2015
To respond the climate change and environmental pollution, the studies on renewable energy policies are increasing. The renewable energy is a new growth engine technology represented by the green industry and green technology. At present, the investments for the renewable energy supply and technology development projects of three main strategy sectors such as sunlight, wind power and hydrogen fuel cell are implemented in our country, while they are still in the early stage, accordingly reducing those uncertainty for the research direction and investment fields is the most urgent issue among others. Thus, this study applied text mining method and multinominal topic model among the big data analysis methods on our country's newspaper articles concerning the renewable energy over the last 10 years, and then analyzed the core issues and global research trend, forecasting the renewable energy fields with the growth potential. It is predicted that these results of the study based on information and communication technology will be actively applied on the renewable energy fields.
Objectives: In recent years, there has been an increased need for a way to extract desired information from multiple medical literatures at once. This study was conducted to confirm the usefulness of unstructured data analysis using previously published medical literatures to search for new indications. Methods: The new indications were searched through text mining, network analysis, and topic modeling analysis using 5,057 articles of atorvastatin, a treatment for hyperlipidemia, from 1990 to 2017. Results: The extracted keywords was 273. In the frequency of text mining and network analysis, the existing indications of atorvastatin were extracted in top level. The novel indications by Term Frequency-Inverse Document Frequency (TF-IDF) were atrial fibrillation, heart failure, breast cancer, rheumatoid arthritis, combined hyperlipidemia, arrhythmias, multiple sclerosis, non-alcoholic fatty liver disease, contrast-induced acute kidney injury and prostate cancer. Conclusions: Unstructured data analysis for discovering new indications from massive medical literature is expected to be used in drug repositioning industries.
The purpose of this study is to analyze domestic patient safety culture research topics using text mining and CONCOR analysis. The research method was conducted in the stages of data collection, data preprocessing, text mining and social network analysis, and CONCOR analysis. A total of 136 articles were analyzed excluding papers that were not published. Data analysis was performed using Textom and UCINET programs. As a result of this study, TF (frequency) of patient safety culture-related studies showed that patient safety was the highest, and TF-IDF (importance in documents) was highest in nursing. As a result of the CONCOR analysis, a total of seven clusters were derived: knowledge and attitude, communication, medical service, team, work environment, structure, organization and management that constitute the patient safety culture. In the future, it is necessary to conduct research on the relationship between the establishment of a patient safety culture and patient outcomes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.