• Title/Summary/Keyword: Text data

Search Result 2,956, Processing Time 0.026 seconds

Color Recommendation for Text Based on Colors Associated with Words

  • Liba, Saki;Nakamura, Tetsuaki;Sakamoto, Maki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • In this paper, we propose a new method to select colors representing the meaning of text contents based on the cognitive relation between words and colors, Our method is designed on the previous study revealing the existence of crucial words to estimate the colors associated with the meaning of text contents, Using the associative probability of each color with a given word and the strength of color association of the word, we estimate the probability of colors associated with a given text. The goal of this study is to propose a system to recommend the cognitively plausible colors for the meaning of the input text. To build a versatile and efficient database used by our system, two psychological experiments were conducted by using news site articles. In experiment 1, we collected 498 words which were chosen by the participants as having the strong association with color. Subsequently, we investigated which color was associated with each word in experiment 2. In addition to those data, we employed the estimated values of the strength of color association and the colors associated with the words included in a very large corpus of newspapers (approximately 130,000 words) based on the similarity between the words obtained by Latent Semantic Analysis (LSA). Therefore our method allows us to select colors for a large variety of words or sentences. Finally, we verified that our system cognitively succeeded in proposing the colors associated with the meaning of the input text, comparing the correct colors answered by participants with the estimated colors by our method. Our system is expected to be of use in various types of situations such as the data visualization, the information retrieval, the art or web pages design, and so on.

Representative Batch Normalization for Scene Text Recognition

  • Sun, Yajie;Cao, Xiaoling;Sun, Yingying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2390-2406
    • /
    • 2022
  • Scene text recognition has important application value and attracted the interest of plenty of researchers. At present, many methods have achieved good results, but most of the existing approaches attempt to improve the performance of scene text recognition from the image level. They have a good effect on reading regular scene texts. However, there are still many obstacles to recognizing text on low-quality images such as curved, occlusion, and blur. This exacerbates the difficulty of feature extraction because the image quality is uneven. In addition, the results of model testing are highly dependent on training data, so there is still room for improvement in scene text recognition methods. In this work, we present a natural scene text recognizer to improve the recognition performance from the feature level, which contains feature representation and feature enhancement. In terms of feature representation, we propose an efficient feature extractor combined with Representative Batch Normalization and ResNet. It reduces the dependence of the model on training data and improves the feature representation ability of different instances. In terms of feature enhancement, we use a feature enhancement network to expand the receptive field of feature maps, so that feature maps contain rich feature information. Enhanced feature representation capability helps to improve the recognition performance of the model. We conducted experiments on 7 benchmarks, which shows that this method is highly competitive in recognizing both regular and irregular texts. The method achieved top1 recognition accuracy on four benchmarks of IC03, IC13, IC15, and SVTP.

An International Comparative Study on Home Economics Text Books of Middle School (중학교 가정교과서의 국제비교 연구)

  • 차미경;윤인경
    • Journal of Korean Home Economics Education Association
    • /
    • v.3 no.1
    • /
    • pp.113-129
    • /
    • 1991
  • This study was conducted to compare the outward aspects, objectives, and the contents of Home Economics text books of middle schools of Korea, Japan, U.S.A. and England. The results were summarized as follows. 1. The outward aspects of tex books: The Korean text books were small in size and the quality of paper was inferior to those of foreign countries. The Japanese text books were written by many authors, contained many lab works and data. Text books of U.S.A. were big in size made with good quality paper and contained many colour pictures. Text books England contained many problems and lab works. 2. Objectives of the Home Economics and Unit objectives: The objective of the subjects of Home Economics was written only in Korean text books. The unit objectives were described most concretely and detailedly in Korean text books comparing with other countries. 3. Contents: Korean text books covered all six areas of foods, clothings, housing, home management, family and occupation and theoretical explanations prevailed. Japanese text books contained numerous lab works, lacked two areas of home management and occupation, thecontents included a few practical lab works two areas of home management and occupation, the contents included a few practical lab works. In the text books of U.S.A. contained all six areas of Home Economics were covered and special emphasis was placed on self discovory and self development, and vocational guidance was also stressed. The text book of England contained only three areas of Home Economics, clothing, foods and housing; the number of area was limited but the basic theories of covered area was intended to lead to self comprehension through questions and lab works.

  • PDF

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

An Active Co-Training Algorithm for Biomedical Named-Entity Recognition

  • Munkhdalai, Tsendsuren;Li, Meijing;Yun, Unil;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.575-588
    • /
    • 2012
  • Exploiting unlabeled text data with a relatively small labeled corpus has been an active and challenging research topic in text mining, due to the recent growth of the amount of biomedical literature. Biomedical named-entity recognition is an essential prerequisite task before effective text mining of biomedical literature can begin. This paper proposes an Active Co-Training (ACT) algorithm for biomedical named-entity recognition. ACT is a semi-supervised learning method in which two classifiers based on two different feature sets iteratively learn from informative examples that have been queried from the unlabeled data. We design a new classification problem to measure the informativeness of an example in unlabeled data. In this classification problem, the examples are classified based on a joint view of a feature set to be informative/non-informative to both classifiers. To form the training data for the classification problem, we adopt a query-by-committee method. Therefore, in the ACT, both classifiers are considered to be one committee, which is used on the labeled data to give the informativeness label to each example. The ACT method outperforms the traditional co-training algorithm in terms of f-measure as well as the number of training iterations performed to build a good classification model. The proposed method tends to efficiently exploit a large amount of unlabeled data by selecting a small number of examples having not only useful information but also a comprehensive pattern.

Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification (공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘)

  • Hong, Sung-Sam;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Since big-data text mining extracts many features and data, clustering and classification can result in high computational complexity and low reliability of the analysis results. In particular, a term document matrix obtained through text mining represents term-document features, but produces a sparse matrix. We designed an advanced genetic algorithm (GA) to extract features in text mining for detection model. Term frequency inverse document frequency (TF-IDF) is used to reflect the document-term relationships in feature extraction. Through a repetitive process, a predetermined number of features are selected. And, we used the sparsity score to improve the performance of detection model. If a spam mail data set has the high sparsity, detection model have low performance and is difficult to search the optimization detection model. In addition, we find a low sparsity model that have also high TF-IDF score by using s(F) where the numerator in fitness function. We also verified its performance by applying the proposed algorithm to text classification. As a result, we have found that our algorithm shows higher performance (speed and accuracy) in attack mail classification.

Feature selection for text data via sparse principal component analysis (희소주성분분석을 이용한 텍스트데이터의 단어선택)

  • Won Son
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.6
    • /
    • pp.501-514
    • /
    • 2023
  • When analyzing high dimensional data such as text data, if we input all the variables as explanatory variables, statistical learning procedures may suffer from over-fitting problems. Furthermore, computational efficiency can deteriorate with a large number of variables. Dimensionality reduction techniques such as feature selection or feature extraction are useful for dealing with these problems. The sparse principal component analysis (SPCA) is one of the regularized least squares methods which employs an elastic net-type objective function. The SPCA can be used to remove insignificant principal components and identify important variables from noisy observations. In this study, we propose a dimension reduction procedure for text data based on the SPCA. Applying the proposed procedure to real data, we find that the reduced feature set maintains sufficient information in text data while the size of the feature set is reduced by removing redundant variables. As a result, the proposed procedure can improve classification accuracy and computational efficiency, especially for some classifiers such as the k-nearest neighbors algorithm.

Data Analytics for Social Risk Forecasting and Assessment of New Technology (데이터 분석 기반 미래 신기술의 사회적 위험 예측과 위험성 평가)

  • Suh, Yongyoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.83-89
    • /
    • 2017
  • A new technology has provided the nation, industry, society, and people with innovative and useful functions. National economy and society has been improved through this technology innovation. Despite the benefit of technology innovation, however, since technology society was sufficiently mature, the unintended side effect and negative impact of new technology on society and human beings has been highlighted. Thus, it is important to investigate a risk of new technology for the future society. Recently, the risks of the new technology are being suggested through a large amount of social data such as news articles and report contents. These data can be used as effective sources for quantitatively and systematically forecasting social risks of new technology. In this respect, this paper aims to propose a data-driven process for forecasting and assessing social risks of future new technology using the text mining, 4M(Man, Machine, Media, and Management) framework, and analytic hierarchy process (AHP). First, social risk factors are forecasted based on social risk keywords extracted by the text mining of documents containing social risk information of new technology. Second, the social risk keywords are classified into the 4M causes to identify the degree of risk causes. Finally, the AHP is applied to assess impact of social risk factors and 4M causes based on social risk keywords. The proposed approach is helpful for technology engineers, safety managers, and policy makers to consider social risks of new technology and their impact.

On the development of DES round key generator based on Excel Macro (엑셀 매크로기능을 이용한 DES의 라운드 키 생성개발)

  • Kim, Daehak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1203-1212
    • /
    • 2012
  • In this paper, we consider the development of round key generator of DES (data encryption standard) based on Microsoft Excel Macro, which was adopted as the FIPS (federal information processing standard) of USA in 1977. Simple introduction to DES is given. Algorithms for round key generator are adapted to excel macro. By repeating the 16 round which is consisted of diffusion (which hide the relation between plain text and cipher text) and the confusion (which hide the relation between cipher key and cipher text) with Microsoft Excel Macro, we can easily get the desired DES round keys.

A study on detective story authors' style differentiation and style structure based on Text Mining (텍스트 마이닝 기법을 활용한 고전 추리 소설 작가 간 문체적 차이와 문체 구조에 대한 연구)

  • Moon, Seok Hyung;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.89-115
    • /
    • 2019
  • This study was conducted to present the stylistic differences between Arthur Conan Doyle and Agatha Christie, famous as writers of classical mystery novels, through data analysis, and further to present the analytical methodology of the study of style based on text mining. The reason why we chose mystery novels for our research is because the unique devices that exist in classical mystery novels have strong stylistic characteristics, and furthermore, by choosing Arthur Conan Doyle and Agatha Christie, who are also famous to the general reader, as subjects of analysis, so that people who are unfamiliar with the research can be familiar with them. The primary objective of this study is to identify how the differences exist within the text and to interpret the effects of these differences on the reader. Accordingly, in addition to events and characters, which are key elements of mystery novels, the writer's grammatical style of writing was defined in style and attempted to analyze it. Two series and four books were selected by each writer, and the text was divided into sentences to secure data. After measuring and granting the emotional score according to each sentence, the emotions of the page progress were visualized as a graph, and the trend of the event progress in the novel was identified under eight themes by applying Topic modeling according to the page. By organizing co-occurrence matrices and performing network analysis, we were able to visually see changes in relationships between people as events progressed. In addition, the entire sentence was divided into a grammatical system based on a total of six types of writing style to identify differences between writers and between works. This enabled us to identify not only the general grammatical writing style of the author, but also the inherent stylistic characteristics in their unconsciousness, and to interpret the effects of these characteristics on the reader. This series of research processes can help to understand the context of the entire text based on a defined understanding of the style, and furthermore, by integrating previously individually conducted stylistic studies. This prior understanding can also contribute to discovering and clarifying the existence of text in unstructured data, including online text. This could help enable more accurate recognition of emotions and delivery of commands on an interactive artificial intelligence platform that currently converts voice into natural language. In the face of increasing attempts to analyze online texts, including New Media, in many ways and discover social phenomena and managerial values, it is expected to contribute to more meaningful online text analysis and semantic interpretation through the links to these studies. However, the fact that the analysis data used in this study are two or four books by author can be considered as a limitation in that the data analysis was not attempted in sufficient quantities. The application of the writing characteristics applied to the Korean text even though it was an English text also could be limitation. The more diverse stylistic characteristics were limited to six, and the less likely interpretation was also considered as a limitation. In addition, it is also regrettable that the research was conducted by analyzing classical mystery novels rather than text that is commonly used today, and that various classical mystery novel writers were not compared. Subsequent research will attempt to increase the diversity of interpretations by taking into account a wider variety of grammatical systems and stylistic structures and will also be applied to the current frequently used online text analysis to assess the potential for interpretation. It is expected that this will enable the interpretation and definition of the specific structure of the style and that various usability can be considered.