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Abstract 
 
Scene text recognition has important application value and attracted the interest of plenty of 
researchers. At present, many methods have achieved good results, but most of the existing 
approaches attempt to improve the performance of scene text recognition from the image level. 
They have a good effect on reading regular scene texts. However, there are still many obstacles 
to recognizing text on low-quality images such as curved, occlusion, and blur. This exacerbates 
the difficulty of feature extraction because the image quality is uneven. In addition, the results 
of model testing are highly dependent on training data, so there is still room for improvement 
in scene text recognition methods. In this work, we present a natural scene text recognizer to 
improve the recognition performance from the feature level, which contains feature 
representation and feature enhancement. In terms of feature representation, we propose an 
efficient feature extractor combined with Representative Batch Normalization and ResNet. It 
reduces the dependence of the model on training data and improves the feature representation 
ability of different instances. In terms of feature enhancement, we use a feature enhancement 
network to expand the receptive field of feature maps, so that feature maps contain rich feature 
information. Enhanced feature representation capability helps to improve the recognition 
performance of the model. We conducted experiments on 7 benchmarks, which shows that 
this method is highly competitive in recognizing both regular and irregular texts. The method 
achieved top1 recognition accuracy on four benchmarks of IC03, IC13, IC15, and SVTP .  
 
 
Keywords: Scene text recognition, deep learning, Representative Batch Normalization, 
Feature representation, Feature enhancement. 
 
 
 
 

 
  The code and datasets are available at github 

https://github.com/xiaolingCao/RBN-STR.git
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1. Introduction 

Text is an important tool for computers to recognize and understand the world, and many 
researchers are engaged in the research of text-related topics, such as text emotion 
classification[1], text document security[2], and scene text recognition[3], etc. Scene Text 
Recognition (STR) refers to recognizing text in different natural environments, such as 
billboards, road signs, trademarks, etc. STR is widely used in artificial intelligence 
applications, which contains autonomous driving, image retrieval, and intelligent translation. 
STR can recognize characters in real natural environments, conversely, Optical Character 
Recognition (OCR) is used to recognize characters in documents with a neat background. STR 
is more complicated than OCR because of the diversity of backgrounds in the real environment, 
camera angles, and lighting conditions, which will affect the quality of natural images. An 
example of some recognition difficulties (e.g., curved, occlusion and blurred, etc.) is shown in 
Fig. 1. 
 

 
Fig. 1. Three kinds of low-quality text images (a) curved. (b) occlusion. (c) blurred font. 

 
STR is divided into text detection and text recognition. In this paper, the main research is 

text recognition. During previous work, the traditional method[3] is used to recognize text on 
a character by character in a bottom-up manner. To some extent, the above method cannot take 
advantage of the sequence relationship between characters, which will weaken the recognition 
effect of the text. Currently, the problem of text recognition is transformed into sequence 
prediction in [3-6]. In [7] the original image was rectified to a horizontal text image by the 
image transformation module, which reduces the difficulty of processing irregular text. Before 
recognition, a pluggable super-resolution module was introduced to process low-resolution 
images without introducing additional computing time [8].  

Although the above methods have made great contributions in the field of scene text 
recognition, all of them have an inherent challenge. On the one hand, using ResNet as a feature 
extractor will lead to the testing effect being worse than expected because the feature 
representation of the model had a strong dependence on the training data.  On the other hand, 
using ResNet to extract features on low-quality images will easily lead to incorrect recognition 
results due to the lack of detailed features. In general, the visual information of scene text 
images is not fully learned and exploited.  
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Our motivation is to explore the valuable feature presentation from two aspects to 
improve the performance of the feature, which can reduce the accuracy difference between 
models on different test and training sets, as well as be able to improve the accuracy of models 
on multiple types of data sets. For the feature extract aspect, inspired by [9] that introduced 
[10] to extract robust features. We introduce a Representation Batch Normalization (RBN) to 
address the variability of feature representation among different instances and embed RBN 
into ResNet as the basic framework of the feature extractor. For the feature enhancement aspect, 
the U-shape network [9-10] can improve the recognition by merging multi-scale features. So, 
we propose a feature enhancement Network (FEN) to refine the feature representation, which 
contains low-level and high-level semantic information. In this paper, we propose a robust 
scene text recognizer based on representation batch normalization (RBN-STR). In addition to 
enhancing the representation of feature maps, this method also contacts contextual features 
and visual features [11-13] for recognition. In summary, the main contributions of this paper 
include three aspects as follows:  
 First, we combine ResNet and RBN to propose a robust and efficient feature extractor. 

This can alleviate the dependence of the model on training data and help the model extract 
effective features on test sets.  

 Second, we propose a feature enhancement module, which incorporates multi-scale visual 
feature maps with different resolutions. As a result, more refined feature information is 
contained in feature maps and feature representation is enhanced.  

 Third, by contacting visual features and contextual information, our experimental results 
achieve the accuracy of top-1 on four benchmarks. 

2. Related work 
Scene text recognition is an important research topic in the field of computer vision. [14] is a 
comprehensive discussion of scene text detection and recognition, which divides STR into 
regular scene text recognition and irregular scene text recognition. This section will review the 
popular research approaches from two different categories. 

2.1 Regular scene text recognition 
In recent years, with the rapid development of deep learning, the research of scene text 
recognition has made significant progress. Some methods regard scene text recognition as 
sequence prediction of text. Such as [15-18] integrated the advantages of both Convolutional 
Neural Network(CNN) as a feature extractor to obtain the spatial features of images and 
Recurrent Neural Network(RNN) for obtaining contextual features. CRNN was built by Shi et 
al [4] which was the first model to combine CNN and RNN for scene text recognition. And 
they employed CTC for transcription. The advantage of CRNN is that it can recognize 
variable-length character sequences and learn directly from sequence labels without additional 
character annotations. Liang et al [6] analyzed and concluded that the feature extractor of 
CRNN could not extract the advanced features of the image. Therefore, they employed ResNet 
to extract effective features and introduced a rectangular convolution stride to expand the 
receptive field of feature extraction at the same time. Gao et al. [5] introduced DSAN as a 
mutually reinforcing supervision mechanism, which is combined with context-level modeling 
and supervision enhancement.  

The above methods use decoders based on CTC, which can solve the problem of 
unaligned characters during training. [19] introduced an RNN to capture longer context 
dependencies, and used a decoder based on the attention mechanism to capture the target 
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sequence. Based on the Encoder-Decoder framework, a new decoder combining CTC and 
attention mechanism was proposed in [18]. Cheng et al. [17] found that using an attention 
mechanism would generate attention drift when images with complex backgrounds or low 
quality. They proposed FAN to automatically align the offset feature region. To solve the 
attention alignment problem, DAN was pointed out by Wang et al [20] that decoupled the 
alignment operation from the historical decoding information. Thus, the problem of 
misalignment caused by decoding error was solved. 

2.2 Irregular scene text recognition 
The state-of-the-art methods have achieved high recognition accuracy on regular scene text 
images, but they encounter difficulties in dealing with irregular scene text (e.g., curved and 
perspective text). Baek et al. [21] introduced a unified four-stage STR framework that most 
existing STR models fit into. Shi et al [22] proposed RARE, an irregular scene recognition 
method that includes a Spatial Transformer Network (STN) and a recognition network. In 
RARE, STN with predicted TPS transform can rectify original text into normal text for the 
following recognition network. Zhan et al [23] have achieved considerable success in 
correcting images because they improved the rectification pipeline that applies a line fitting 
transform to iteratively correct images. Luo et al [24] tackled rotated, scaled, and stretched 
characters with MORN, which is free of geometric constraints. AON was described by Cheng 
et al [25], which only required image and text-level annotations for training. Li et al. [26] 
designed an encoder-decoder framework based on 2D attention which has the advantage of 
not requiring text correction. STAN was proposed in [27], which divides the image into 
multiple non-overlapping regions and then performs the transformation for each region 
separately. And the sequential transformation is designed to achieve the smooth connection of 
adjacent regions. 
 In summary, the methods mentioned above either ignored the dependency of feature 
extraction on the training data or the importance of detailed features for recognition. In order 
to improve the generalization ability of the recognizer and increase the capacity of the feature 
map, we propose a robust scene text recognizer by exploiting RBN and a feature enhancement 
network. 

3. Method 
For STR, we propose RBN-STR, which consists of five components, as shown in Fig. 2; 1) 
Image Transformation: input image is corrected to a regular image. 2) Feature Extractor: 
rectified image is used to extract multi-scale visual feature maps. 3) Feature Enhancement: 
multi-scale feature maps are enhanced and fused into feature maps of the same size 
(H/4×W/4×512). 4) Sequence Modeling: it was used to extract the contextual information of 
the text, and contact the contextual information and the feature map to form a new feature 
space. 5) Decoder: the feature space is decoded into predictive texts. In this section, we 
describe the framework of RBN-STR in detail. 
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Fig. 2. The proposed architecture of RBN-STR. 

3.1 Image Transformation 

 
Fig. 3. The architecture of STN. 

 
The structure of the Image transform uses the spatial transformation network (STN) to rectify 
the image, as same as Aster [7]. STN includes three parts: localization network, grid generator, 
and sampler, as shown in Fig. 3. The size of the STN input image I is 100 × 32. The 
rectification process is as follows. Firstly, a set of control points is predicted on the image I by 
a localization network. Then, the TPS transformation parameters are calculated in the grid 
generator using the control points, and the sampling grid P is generated at the image I. Finally, 
the sampling grid P and the image I are simultaneously fed into the sampler V, and the corrected 
image I' is obtained by sampling on the grid. The size of I' as same as the input. 

3.2 Feature Extraction 

3.2.1 BatchNorm 
The feature mapping is 𝑋𝑋 ∈ 𝑅𝑅𝑁𝑁×𝐶𝐶×𝐻𝐻×𝑊𝑊, where N, C, H, and W represent the batch size, the 
number of channels, and the height and width of the input features, respectively. The operation 
of BatchNorm for X is performed as follows that X denotes feature maps. First, 𝑋𝑋𝑐𝑐  is 
centralized feature map that is obtained by X centralization, represented as follows 
 Xc=X-E(X)   (1)  
Where E(X) denotes the mean value used for centering, which is represented as follows.  
 E(X)←mE(X)+(1-m)µB (2) 
Where m denotes accumulation momentum, 𝜇𝜇𝐵𝐵 represents the mean value of the mini-batch 
in the training phase, expressed as follows. 
 𝜇𝜇𝐵𝐵 = 1

𝑁𝑁𝑁𝑁𝑁𝑁
∑ ∑ ∑ 𝑋𝑋𝑊𝑊

𝑤𝑤=1
𝐻𝐻
ℎ=1

𝑁𝑁
𝑛𝑛=1    (3) 
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Then, executing the scaling operation on the feature map 𝑋𝑋c, we get the scaled feature 
map 𝑋𝑋𝑠𝑠, represented as follows 
 Xs=

X𝑐𝑐

�Var(X)+ϵ
 (4) 

Where ϵ is used to avoid zero variance, Var(X) denotes the variance in the scaling operation, 
which is represented as follows. 
 Var(X)←mVar(X)+(1-m)σB

2  (5)                                                   
Where 𝜎𝜎𝐵𝐵2 is the variance value of the mini-batch in the training phase, represented as 
follows 
 σB

2 = 1
NHW

∑ ∑ ∑ �X-μB�
2 W

w=1
H
h=1

N
n=1  (6) 

Finally, the feature map 𝑋𝑋𝑠𝑠  is affine transformed to obtain the radiative transformed 
feature Y with the following expression. 
 Y=Xsγ+β    (7) 
Where γ and β are the scaling and translation parameters, respectively.  

However, the test data usually has a large variability with the training data, which reduces 
the generalization ability of the network when the data distribution is different. On the one 
hand, inappropriate running mean values in the testing phase can make the centering features 
contain extra noise after activation or lose feature representations. On the other hand, 
inappropriate running variance can produce some scaling features with too much/too little 
intensity and result in an unstable feature distribution between channels, which leads to a 
weaker feature representation in the test phase. In this regard, we propose an RBN to enhance 
the representative feature representation of different instances and produce a more stable 
feature distribution. 

3.2.2 Representation Batch Normalization  
Centering and scaling are easy to ignore the feature differences between data individuals. So, 
we introduce the calibration mechanism into BatchNorm, which is enriching the feature 
representations on the test sets. According to [28], the BatchNorm is replaced by RBN after 
each convolutional layer as a novel residual block, the structure is shown in Fig. 4.  
 

 
Fig. 4. Residual blocks. (a) denotes the structure with BatchNorm, (b) denotes the structure with 

RBN. 
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RBN proposes centering calibration and scaling calibration based on the original 

BatchNorm. Centering calibration enhances valid feature information and reduces noisy 
features by using instance-specific statistics to move features around. The scaling calibration 
accordingly adjusts the intensity of the features based on the statistics of the instances to 
produce a more stable distribution of features. The calibration mechanism improves the feature 
representation ability of individual data while maintaining the mini-batch advantage of 
BatchNorm. Unlike BatchNorm, we calculate the mean value (𝜇𝜇𝑐𝑐) and variance (𝜎𝜎𝑐𝑐2) of the 
feature map from the channel dimension, denoted as follows. 

 
 μc= 1

HW
∑ ∑ XW

w=1
H
h=1   (8)   

 
 σc

2= 1
HW

∑ ∑ �X-μc�
2W

w=1
H
h=1  (9) 

 
To make the centering operation not dependent on the running mean, we perform a 

centering calibration operation on feature X before the feature centering operation, the formula 
is defined as follows: 
 Xcm=X+ωm.Km  (10) 
 
where 𝜔𝜔𝑚𝑚 denotes the weight and 𝐾𝐾𝑚𝑚 denotes the statistics of the X. 

The scaling operation affects the intensity of features when the affine transformation is 
unchanged, and scaling features using inaccurate running variance can lead to instability in 
feature intensity. We calibrate the feature intensity by using a scaling calibration after the 
original scaling operation, the expression is defined as follows: 

 
 Xcs=Xs∙R(ωv∙Ks+ωb)  (11) 
 
where 𝜔𝜔𝑣𝑣 and 𝜔𝜔𝑏𝑏 denote trainable parameters and 𝐾𝐾𝑠𝑠 denotes the statistics of the feature map 
𝑋𝑋𝑠𝑠; R () is a calibration function used to compress the eigenvalues outside the distribution to 
make the feature distribution more stable. It is represented by Sigmoid function.  Compared 
with BatchNorm, RBN reduces noise and improves feature representation. We can directly 
introduce the RBN in ResNet to propose a new encoder. The regular text image is used to 
encode. Generally, the low resolution of the image obtained by Image transformation will 
affect the recognition performance. Our proposed encoder improves the feature extraction of 
low-quality images. The four stages of the encoder output four feature maps of different sizes, 
respectively. These feature maps are 1/4, 1/8, 1/16, and 1/32 of the input image, respectively. 
The used encoder to extract feature maps with different resolutions, which contain more 
detailed and accurate semantic information. Finally, we use a 1×1 convolutional layer to 
change the number of channels of each feature map to 128, and obtain a feature pyramid 𝐹𝐹𝑟𝑟. 
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3.3 Feature Enhancement Network 

 
Fig. 5. (a) denotes the structure of the feature enhancement Network. (b) denotes the process of 

upscale convolutional layers and downscale convolutional layers. (c) denotes the up-sampling process 
of different scale feature maps. 

 
Due to the limited acceptance domain of feature maps, we propose a low computational 

feature enhancement (FEN) network to further improve the ability of feature representation. 
FEN is a U-shaped network, which integrates low-level and high-level information to enhance 
the characteristics of different scales. The collected low-level and high-level semantic 
information enriches the details of the feature map and is helpful for text prediction. After 
obtaining the feature pyramid 𝐹𝐹𝑟𝑟 the FEN is applied to it. As shown in Fig. 5, FEN includes 
three stages upscale convolutional layers, downscale convolutional layers, and up-sampling. 
The feature pyramid 𝐹𝐹𝑟𝑟 is entered into upscale convolutional layers, sequentially convolving 
in the stride of 32, 16, 8, and 4 to output an upscale enhanced feature pyramid. In the downscale 
convolution stage, the output of each layer is added to the output of the same size in the 
upscaling convolutional layers as the input of the next layer. The downscale convolution stage 
is successively performed in the stride of 4, 8, 16, and 32, and the output feature pyramid is 
connected with 𝐹𝐹𝑟𝑟  to obtain the final feature pyramid 𝐹𝐹𝑒𝑒 . Finally, to unify the scale of the 
feature maps, all feature maps of 𝐹𝐹𝑒𝑒 are upsampled to 1/4 of the original image and integrated 
into the enhanced feature map 𝐹𝐹𝑓𝑓, the size is H/4×W/4×512. 

Feature maps with different resolutions from low to high are combined by FEN, which is 
covering a larger receptive field and containing more diversity of semantic information. FEN 
not only deepens the network structure but also effectively refines the features. Thereby, the 
ability of feature representation is enhanced. In addition, the contact function in feature 
enhancement is referred to as separable convolution, which improves computational efficiency. 

3.4 Sequence Modeling 
LSTM[4] is an RNN unit that can be used to learn contextual cues but solves the problem of 
vanishing gradients during training. LSTMs help to classify, analyze and evaluate time series 
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related data. In sentiment classification research[1], stacking multiple LSTM layers is used for 
sequence classification. However, this paper uses BiLSTM[6] to capture long-range 
dependencies on feature maps that consist of a forward and a backward LSTM.  

We use BiLSTM to capture contextual information in character sequences to derive 
semantic information. The scene text image has high semantic information, which can assist 
features to predict text sequences. However, in feature extraction stage only pays attention to 
the visual features of the image and ignores the semantic information of the text. Therefore, 
the model may be hindered in processing low-quality image recognition problems such as blur, 
occlusion, and incomplete characters. To mitigate the impact of the lack of semantic 
information on the recognition effect, we combine the visual and semantic information of 
images to deal with the recognition problem of scene text. 

 The feature map 𝐹𝐹𝑓𝑓   is fed into BiLSTM to get a sequence of contextual features 𝑉𝑉 =
𝑆𝑆𝑆𝑆𝑆𝑆�𝐹𝐹𝑓𝑓�with the same length. Then, we contact the visual feature map and the contextual 
sequence to obtain a new feature space 𝑁𝑁 = �𝐹𝐹𝑓𝑓 ,𝑉𝑉�. 

3.5 Decoder 
In the prediction stage, the feature sequence is predicted as the target string sequence. The 
common methods are connectionist time classification (CTC) and attention mechanism. 
However, the effect of using the attention mechanism to achieve prediction is better than using 
CTC. Attention-based LSTM refers to the combination of attention mechanism and LSTM 
structure as a prediction module. Attention-based LSTM can automatically capture the 
information flow in the input sequence and predict the output sequence. In the decoding stage, 
an attention-based LSTM is used to decode, which aligns the attention region with the 
corresponding truth labels. At moment t, the output predicted by the decoder is 𝑦𝑦𝑡𝑡: 
 yt=softmax�Wyst+by�  (12) 
Where softmax is activation function, 𝑊𝑊𝑦𝑦 and 𝑏𝑏𝑦𝑦 are trainable parameters and 𝑠𝑠𝑡𝑡 is the hidden 
state of the LSTM at moment t. The expressions are as follows. 
 st=LSTM�yt-1,gt,st-1� (13) 
Where 𝑔𝑔𝑡𝑡 is the glimpse vector, which is the weighted sum of the feature space vector 𝐶𝐶 =
(𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑇𝑇), 
 𝑔𝑔𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑗𝑗

𝑇𝑇
𝑗𝑗=1 𝑛𝑛𝑗𝑗 (14) 

Where 𝛼𝛼𝑡𝑡,𝑗𝑗 is the attention weight, calculated as follows: 

 αt,j=
exp�et,j�

∑ exp�et,j�T
j

   (15) 

 et,j=vT tanh�Wst-1+Vnj+b� (16) 
where 𝑣𝑣，𝑊𝑊，𝑉𝑉 and b are trainable parameters and the dimension of the LSTM hidden layer 
is 512. 

4. Experiment 
In this section, the feasibility of RBN-STR is verified by extensive experiments. First, the 
training and test datasets are briefly introduced in 4.1 and the detailed implementation process 
is described in 4.2. Then, RBN-STR is analyzed and compared with the advanced methods in 
4.3. Finally, in order to better present the innovative points of this paper, we perform ablation 
experiments and analyze the impact of our main contributions in 4.4. 
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4.1 Datasets 
Firstly, the model is trained on the two synthetic datasets Synth Text and MJSynth, which 
contain 9 million and 8 million synthetic word images respectively. Then, the model is tested 
on four regular datasets (IIIT5K, SVT, ICDAR2003, ICDAR2013) and three irregular datasets 
(ICDAR2015, SVTP, and CUTE). 

MJSynth (MJ) [29] is a synthetic data set published by Jaderberg in 2014. There are 9 
million images covering 90K words. SynthText (ST) [30] is a composite training set containing 
8 million images. Each image has about ten-word instances, annotated with character and 
word-level bound boxes.  

IIIT 5K-Words (IIIT5K) [31] contains 3000 regular images for testing, which are cropped 
from Internet images. The text sample of images is almost horizontal. Street View Text (SVT) 
[32] contains 647 images with word-level axis-aligned bounding boxes, in the test dataset, 
which are collected from Google Street View. These images suffer from noise, blur, or have 
low resolutions. ICDAR2003 (IC03) [33] contains 251 scene images and 867 cropped images 
for testing, which are annotated with text bounding boxes. 

ICDAR2013 (IC13) [34] contains 1015 cropped word images from signboards, books, 
and posters. Most of them are inherited by IC03. ICDAR2015 (IC15) [35] contains 4468 
images for training and 2077 images for testing. Most images contain irregular text (oriented, 
perspective, or curved) because they are cropped under arbitrary angles. Street View Text 
Perspective (SVTP) [36] is collected from side-view angle snapshots in Google Street View 
and includes 639 images for testing. Therefore, most of them are subjected to critically 
perspective distortions. CUTE80 (CT80) [37] is a curved text data set, containing 288 images 
that are cropped from natural scenes. The dataset of the images with high resolution is 
annotated by words, and the dataset is used to test. 

4.2 Implementation Details 

 
Fig. 6. Training loss on train datasets and testing accuracy on the validation dataset. 

 
The model we proposed is based on Python3.6. The hardware environment for experimental 
training and testing is a Tesla V100 GPU with 32G memory. We use MJSynth and SynthText 
as training dataset s, and there are about 17 million synthetic images in total. We use only 
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synthetic data for training and do not need to fine-tune any of the datasets. In the model, the 
size of the image is 32 × 100 and we optimize the training model using AdaDelta optimizer. 
We set the initial learning rate λ to 1 and the batch size to 128. The model can recognize 36 
types of characters, including 26 case-insensitive letters and 10 digits. The accuracy and loss 
curves are displayed in Fig. 6. 

4.3 Results on regular and irregular datasets 
To verify the validity of our proposed method, we evaluate and compare our method with the 
previous state-of-the-arts on the above-mentioned benchmarks. Following the previous 
methods, we measure the recognition performance with word recognition accuracy (WRA). 
WRA is defined by 𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑊𝑊𝑐𝑐/𝑊𝑊𝑡𝑡, where 𝑊𝑊𝑡𝑡 represents the total number of words, and 𝑊𝑊𝑐𝑐 
represents the number of correctly recognized words. 
 We compare the WAR of our method and previous outstanding methods on four regular 
datasets, as shown in Table 1. Our method achieves state-of-the-art performance on IC03 and 
IC13. There are partially curved or oriented images in IIIT5k and SVT, thus causing our 
accuracy to be slightly lower than [5,17,24]. The performance on the regular scene text dataset 
shows that the method has great competitiveness. Likewise, we evaluate the performance of 
our method on three irregular text datasets. The result is displayed in Table 1. RBN-STR 
achieves excellent performance on IC15 and SVTP, which is more accurate than other methods. 
However, the performance on CUTE is not satisfactory. Images in CUTE. Some images in 
CUTE contain multiple deformations and complex text distortion, while STN correct the shape 
of the text by rotating, scaling, and translation them. The image include additional noise after 
image transform and feature enhancement reinforce the characteristics of some of the noise, 
which is an important reason why the model performs poorly on CUTE. 
 

Table 1. Recognition accuracies (%) with different methods on 7 benchmarks. The best accuracy is 
shown in red font. 

Method 
Regular Irregular 

IIIT5K SVT IC03 IC13 IC15 SVTP CUTE 

MORAN[24] 91.2 88.3 95.0 92.4 68.8 76.1 77.4 

DAN[20] 94.3 89.2 95.0 93.9 74.5 80.0 84.4 

STAN[27] 94.1 90.6 95.1 92.8 76.7 82.2 83.3 

RNRT[6] 84.7 80.0 90.6 90.1 - 70.9 62.6 

SAR[26] 95.0 91.2 - 94.0 78.8 79.2 81.3 

ASTER[7] 93.4 93.6 94.5 91.8 76.1 78.5 79.5 

DMDAN[31] 92.3 86.9 93.3 92.6 75.4 78.2 83.3 

FAN[17] 87.4 85.9 94.2 93.3 81.3 - - 

ESIR[13] 93.3 90.2 90.2 91.3 76.9 79.9 83.3 

Ours 93.0 90.5 95.5 94.1 79.9 82.3 72.2 
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4.4 Inference Speed 

Table 2. Comparison of inference speed 

Methods ESIR MORAN ASTER RBN-STR 

Time(ms) 28.0 3.50 24.16 2.71 

To explore the efficiency of RBN-STR, we evaluate the average inference time per image and 
compare it with state-of-the-art rectification methods. For comparison, we test all methods 
with the same running environment. Table 2 present the inference speed of each method. On 
the same hardware, the RBN-STR has the fastest inference speed with test time of only 2.71ms.  
They used two layers of BiLSTM and ESIR with 5 rectification iterations. Rectification and 
BiLSTM were computationally intensive and time consuming. But we proposed feature 
extraction network is computationally light, and the proposed FEN does not introduce 
additional computation. 

4.5 Comparison with ASTER 
In our experiments, we use ASTER [7] as the baseline, which does not contain the RBN and 
feature enhancement network. As shown in Fig. 7, the accuracy of RBN-STR on the two 
regular text data sets and the two irregular text datasets are higher than ASTER. In detail, our 
model improves by 1% on IC03, 2.3% on IC13, up to 3.8% on IC15, and 3.8% on SVTP 
compared to ASTER. But the accuracy of RBN-STR on IIITK, SVT, and CUTE is slightly 
lower than ASTER. We randomly select some curved, blurred, and occluded low-quality 
images from the test set of irregular scene text, which is used to verify the recognition 
performance of the two different methods. Fig. 8 shows the visual recognition results of some 
images. 

 These examples in Fig. 8 point out that our proposed model is excellent for text 
recognition in partially irregular scenes. Both ASTER and RBN-STR correctly recognize 
curved and perspective text because they both use the same STN module, which transforms 
the input image into a horizontal text image. For recognizing images with complex 
backgrounds and images with blurred and obscured characters, such as "World", "Kitchen", 
"PARK", and "SIMON", ASTER is difficult to recognize, but RBN-STR can recognize them 
effectively. This is because RBN-STR uses richer features covering a wide range of receptive 
fields, and uses semantic information to assist text prediction in the decoding stage. Despite 
the disadvantage in a few cases, the recognition performance of RBN-STR has also achieved 
convincing progress. 
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Fig. 7. Comparative evaluation of ASTER and our proposed method. 

 

 
Fig. 8. Visual recognition results in two models. ASTER, RBN-STR, and Ground Truth are 

represented by green, black, and blue fonts, respectively. The error results are noted by red fonts. 

4.6 Ablation Study  
To verify the effectiveness of RBN and FEN, we did a series of ablation experiments. All 
experiments were trained using MJ and ST, and the accuracy of the models was compared on 
four datasets, IC03, IC13, IC15, and SVTP. 
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Table 3. Comparison of two regular benchmarks and two irregular benchmarks with different 
strategies. RBN means to use Representation BatchNorm instead of general BatchNorm. FEN 

represents embedding the feature enhancement network into the model. 
Method RBN FEN IC03 IC13 IC15 SVTP 

Baseline × × 94.5 91.8 76.1 78.5 

with RBN √ × 94.8 92.5 75.8 79.5 

with FEN × √ 95.2 92.0 76.6 81.3 

RBN-STR √ √ 95.5 94.1 79.9 82.3 

 
To verify the function of RBN, we use ResNet50 as the backbone network and discuss 

the effect of different BatchNorm on recognition. From Table 3 we observe that compared to 
Baseline, the accuracy of the model using RBN improved on all four datasets, by 0.3% on 
IC03, 0.7% on IC13, and 0.7% on SVTP, however, reduce by 0.6% on IC15. The results show 
that using RBN can alleviate the instability of feature extraction caused by instance differences. 

To verify the effectiveness of the FEN, we conducted a series of ablation experiments 
with or without FEN, as shown in Table 3. Compared with Baseline, the model with the 
addition of FEN improves 0.7%, 0.2%, 0.5%, and 2.8% on the four datasets, respectively. The 
results show that the FFN improves feature representation by fusing semantic information of 
different resolutions, which affects the recognition performance. 

4.7 Discussion 
RBN-STR has stable feature representation in the face of irregular scene texts, showing its 
stability and robustness. Experiments demonstrated that RBN-STR can recognize scene text 
flexibly in most cases. But there are still difficulties in recognizing certain images, such as 
complex curvature, perspective, and low resolution. The quality of the image affects the 
process of image correction and feature extraction, so it is an important cause of recognition 
failure. Therefore, we may consider reducing the difficulty of STR from the aspect of image 
preprocessing, thereby improving the recognition performance of the algorithm. 

5. Conclusion 
In this paper, we consider how to improve the recognition accuracy of low-quality scene text 
from the feature level. We propose a scene text recognizer based on representation batch 
normalization, referred to as RBN-STR. Firstly, representation batch normalization is used to 
enhance the feature representation of the instance, so that the model obtains a stable feature 
distribution in different test sets. Then, we also analyze the key role of different levels of 
feature resolution on text recognition, using the feature enhancement module combined with 
feature maps of different resolutions to refine the feature representation capability. Finally, our 
proposed RBN-STR has strong competitiveness in scene text recognition, especially on IC03, 
IC13, IC15, and SVTP. It is experimentally demonstrated that adding the representation batch 
normalization and feature enhancement modules effectively enhances the text recognition 
effect.  
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We consider two promising directions for future work. First, our model does not handle 
vertical text and text with large distortion well. Therefore, we will continue to investigate the 
vertical text recognizer in the future. Second, we prepare to integrate text detection into the 
model and propose an end-to-end scene text recognition method. 
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