• Title/Summary/Keyword: Text Collection

Search Result 302, Processing Time 0.029 seconds

The Popularity depicted on Fashion Make-up in John Galliano's Collection (John Galliano 컬렉션의 패션메이크업에 나타난 통속성)

  • Jang, Ae-Ran
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.6 s.115
    • /
    • pp.71-86
    • /
    • 2007
  • Affinity between a creative and experimental fashion design and a Fashion Make-up expressed in John Galliano's Collection was analysed to examine the harmony between Beauty and Fashion. This approach may establish the link between the Fashion Make-up analysed in view of Aesthetics and aesthetic characteristics of a fashion design that a fashion designer pursues. The Fashion Make-up plays a significant role to express a relevance to a design spirit because it is a visual text that a audience faces easily in a collection leading the style. Under the proposition that collection is understood as a popular culture as the fashion is preferential and popular, the Fashion Make-up can be analysed in the aspect of aesthetics. The characteristics reflecting the popularity of popular culture, such as the comic, the erotic, the fantastic and the sentimental are used to analyse and interpret the Fashion Make-up. The fashion design and Fashion Make-up with one characteristics or combined ones showing uniqueness in the popular culture are compared and analyzed.

A study of the reference books of ${\ulcorner}$Classified Collection of Medical Prescriptions${\lrcorner}$ ("의방류취(醫方類聚)"의 인용서(引用書)에 관한 연구(1))

  • Choi, Hwan-Soo;Shin, Soon-Shik
    • Korean Journal of Oriental Medicine
    • /
    • v.3 no.1
    • /
    • pp.17-40
    • /
    • 1997
  • ${\ulcorner}$Classified Collection of Medical Prescriptions${\lrcorner}$(${\ulcorner}$醫方類聚${\lrcorner}$ is a medical book which classifies and edits the existing books. First of all, it is not until finishing the study of reference books that we can study the ${\ulcorner}$Classified Collection of Medical Prescriptions${\lrcorner}$ in earnest. We did not take traditional non-systematic methods to study the reference books of ${\ulcorner}$Classified Collection of Medical Prescriptions${\lrcorner}$ systematically. We investigated the title of 'reference book's name' as a reference book and did not investigate re-reference books. The number of reference books are one hundred forty-two volumes. Most of the reference books are medical books; some books are about Taoism and Buddhism. The title of the reference books are given a name by various methods. But these methods have a lot of problems. First, the same title book misapply an alias, the original text name and an abbreviated name. Second, a chapter name misapplies reference books. Third, reference books misapplies a chapter name. Forth, the writer and book name misapplies reference books and so on. From quotation collection about ${\ulcorner}$Classified Collection of Medical Prescriptions${\lrcorner}$'s characteristic point fellows below in three kinds. First, it emphasizes medical therapy. Second, most of Song(宋) period, Geum Yuan(金 元) period of China reference books take place in here. During this period it had accepted studying theory from clinical accumulation and the result of re-clinical studies reception based on theory research, and also had accepted Geum Yuan's expansive theory. Third, by adding technical books of a professional assortment, it has raised its profession of division.

  • PDF

A study on the current status of DIY clothing products related to fabric using text mining (텍스트마이닝을 활용한 패브릭 관련 DIY 의류 상품 현황 연구)

  • Eun-Hye Lee;Ha-Eun Lee;Jeong-Wook Choi
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.2
    • /
    • pp.111-122
    • /
    • 2023
  • This study aims to collect Big Data related to DIY clothing, analyze the results on a year-by-year basis, understand consumers' perceptions, the status, and reality of DIY clothing. The reference period for the evaluation of DIY clothing trends was set from 2012 to 2022. The data in this study was collected and analyzed using Textom, a Big Data solution program certified as a Good Software by the Telecommunications Technology Association (TTA). For the analysis of fabric-related DIY products, the keyword was set to "DIY clothing", and for data cleansing following collection, the "Espresso K" module was employed. Also, via data collection on a year-by-year basis, a total of 11 lists were generated and the collected data was analyzed by period. The following are the findings of this study's data collection on DIY clothing. The total number of keywords collected over a period of ten years on search engines "Naver" and "Google" between January 1, 2012 and December 31, 2022 was 16,315, and data trends by period indicate a continuous upward trend. In addition, a keyword analysis was conducted to analyze TF-IDF (Term Frequency-Inverse Document Frequency), a statistical measure that reflects the importance of a word within data, and the relationship with N-gram, an analysis of the correlation concerning the relationship between words. Using these results, it was possible to evaluate the popularity and growing tendency of DIY clothing products in conjunction with the evolving social environment, as well as the desire to explore DIY trends among consumers. Therefore, this study is valuable in that it provides preliminary data for DIY clothing research by analyzing the status and reality of DIY products, and furthermore, contributes to the development and production of DIY clothing.

Collection and Extraction Algorithm of Field-Associated Terms (분야연상어의 수집과 추출 알고리즘)

  • Lee, Sang-Kon;Lee, Wan-Kwon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.347-358
    • /
    • 2003
  • VSField-associated term is a single or compound word whose terms occur in any document, and which makes it possible to recognize a field of text by using common knowledge of human. For example, human recognizes the field of document such as or , a field name of text, when she encounters a word 'Pitcher' or 'election', respectively We Proposes an efficient construction method of field-associated terms (FTs) for specializing field to decide a field of text. We could fix document classification scheme from well-classified document database or corpus. Considering focus field we discuss levels and stability ranks of field-associated terms. To construct a balanced FT collection, we construct a single FTs. From the collections we could automatically construct FT's levels, and stability ranks. We propose a new extraction algorithms of FT's for document classification by using FT's concentration rate, its occurrence frequencies.

A Study of Consumer Perception on Fashion Show Using Big Data Analysis (빅데이터를 활용한 패션쇼에 대한 소비자 인식 연구)

  • Kim, Da Jeong;Lee, Seunghee
    • Journal of Fashion Business
    • /
    • v.23 no.3
    • /
    • pp.85-100
    • /
    • 2019
  • This study examines changes in consumer perceptions of fashion shows, which are critical elements in the apparel industry and a means to represent a brand's image and originality. For this purpose, big data in clothing marketing, text mining, semantic network analysis techniques were applied. This study aims to verify the effectiveness and significance of fashion shows in an effort to give directions for their future utilization. The study was conducted in two major stages. First, data collection with the key word, "fashion shows," was conducted across websites, including Naver and Daum between 2015 and 2018. The data collection period was divided into the first- and second-half periods. Next, Textom 3.0 was utilized for data refinement, text mining, and word clouding. The Ucinet 6.0 and NetDraw, were used for semantic network analysis, degree centrality, CONCOR analysis and also visualization. The level of interest in "models" was found to be the highest among the perception factors related to fashion shows in both periods. In the first-half period, the consumer interests focused on detailed visual stimulants such as model and clothing while in the second-half period, perceptions changed as the value of designers and brands were increasingly recognized over time. The findings of this study can be utilized as a tool to evaluate fashion shows, the apparel industry sectors, and the marketing methods. Additionally, it can also be used as a theoretical framework for big data analysis and as a basis of strategies and research in industrial developments.

Accelerating the EM Algorithm through Selective Sampling for Naive Bayes Text Classifier (나이브베이즈 문서분류시스템을 위한 선택적샘플링 기반 EM 가속 알고리즘)

  • Chang Jae-Young;Kim Han-Joon
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.369-376
    • /
    • 2006
  • This paper presents a new method of significantly improving conventional Bayesian statistical text classifier by incorporating accelerated EM(Expectation Maximization) algorithm. EM algorithm experiences a slow convergence and performance degrade in its iterative process, especially when real online-textual documents do not follow EM's assumptions. In this study, we propose a new accelerated EM algorithm with uncertainty-based selective sampling, which is simple yet has a fast convergence speed and allow to estimate a more accurate classification model on Naive Bayesian text classifier. Experiments using the popular Reuters-21578 document collection showed that the proposed algorithm effectively improves classification accuracy.

The Frequency Analysis of Teacher's Emotional Response in Mathematics Class (수학 담화에서 나타나는 교사의 감성적 언어 빈도 분석)

  • Son, Bok Eun;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.32 no.4
    • /
    • pp.555-573
    • /
    • 2018
  • The purpose of this study is to identify the emotional language of math teachers in math class using text mining techniques. For this purpose, we collected the discourse data of the teachers in the class by using the excellent class video. The analysis of the extracted unstructured data proceeded to three stages: data collection, data preprocessing, and text mining analysis. According to text mining analysis, there was few emotional language in teacher's response in mathematics class. This result can infer the characteristics of mathematics class in the aspect of affective domain.

Analyzing and classifying emotional flow of story in emotion dimension space (정서 차원 공간에서 소설의 지배 정서 분석 및 분류)

  • Rhee, Shin-Young;Ham, Jun-Seok;Ko, Il-Ju
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.3
    • /
    • pp.299-326
    • /
    • 2011
  • The text such as stories, blogs, chat, message and reviews have the overall emotional flow. It can be classified to the text having similar emotional flow if we compare the similarity between texts, and it can be used such as recommendations and opinion collection. In this paper, we extract emotion terms from the text sequentially and analysis emotion terms in the pleasantness-unpleasantness and activation dimension in order to identify the emotional flow of the text. To analyze the 'dominant emotion' which is the overall emotional flow in the text, we add the time dimension as sequential flow of the text, and analyze the emotional flow in three dimensional space: pleasantness-unpleasantness, activation and time. Also, we suggested that a classification method to compute similarity of the emotional flow in the text using the Euclidean distance in three dimensional space. With the proposed method, we analyze the dominant emotion in korean modern short stories and classify them to similar dominant emotion.

  • PDF

Building a Korean Text Summarization Dataset Using News Articles of Social Media (신문기사와 소셜 미디어를 활용한 한국어 문서요약 데이터 구축)

  • Lee, Gyoung Ho;Park, Yo-Han;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.8
    • /
    • pp.251-258
    • /
    • 2020
  • A training dataset for text summarization consists of pairs of a document and its summary. As conventional approaches to building text summarization dataset are human labor intensive, it is not easy to construct large datasets for text summarization. A collection of news articles is one of the most popular resources for text summarization because it is easily accessible, large-scale and high-quality text. From social media news services, we can collect not only headlines and subheads of news articles but also summary descriptions that human editors write about the news articles. Approximately 425,000 pairs of news articles and their summaries are collected from social media. We implemented an automatic extractive summarizer and trained it on the dataset. The performance of the summarizer is compared with unsupervised models. The summarizer achieved better results than unsupervised models in terms of ROUGE score.

Building Concept Networks using a Wikipedia-based 3-dimensional Text Representation Model (위키피디아 기반의 3차원 텍스트 표현모델을 이용한 개념망 구축 기법)

  • Hong, Ki-Joo;Kim, Han-Joon;Lee, Seung-Yeon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.9
    • /
    • pp.596-603
    • /
    • 2015
  • A concept network is an essential knowledge base for semantic search engines, personalized search systems, recommendation systems, and text mining. Recently, studies of extending concept representation using external ontology have been frequently conducted. We thus propose a new way of building 3-dimensional text model-based concept networks using the world knowledge-level Wikipedia ontology. In fact, it is desirable that 'concepts' derived from text documents are defined according to the theoretical framework of formal concept analysis, since relationships among concepts generally change over time. In this paper, concept networks hidden in a given document collection are extracted more reasonably by representing a concept as a term-by-document matrix.