• Title/Summary/Keyword: Tetragonal zirconia

Search Result 179, Processing Time 0.025 seconds

Preparation of $Al_2O_3$-$ZrO_2$Composite Powders by the Use of Emulsions(IV) : Emulsion-Spray Pyrolysis Method (에멀젼을 이용한 $Al_2O_3$-$ZrO_2$ 복합분체의 제조(IV) : 에멀젼-분무열분해법)

  • 현상훈;김동준
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.955-964
    • /
    • 1990
  • A new process of emulsiion-spray pyrolysis for synthesizing ceramic powders was developed and the characteristics of Al2O3-20w/o ZrO2 composite powders prepared by this method were investigated. The composite powders synthesized in this study were spherical dense particles with 0.1~0.4${\mu}{\textrm}{m}$ of diameter. As found in powders derived by the emulsion-hot kerosene drying method, all zirconia in Al2O3-20w/o ZrO2 powders heat-treated at 120$0^{\circ}C$ was in the tetragonal form at room temperature. The relative density and the fracture toughness of composites sintered at 1$650^{\circ}C$ for 4hrs were 95% and 5.2MPa.m1/2, respectively.

  • PDF

Osseointegration of zirconia implant in the tibia of pigs (돼지의 경골에 식립된 지르코니아 임플란트의 골유착에 관한 연구)

  • Kim, Lee-Kyoung;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.190-198
    • /
    • 2013
  • Purpose: The purposes of this study were to investigate osseointegration around zirconia implants which had machined or alumina sandblasted surface, and to compare the results with titanium implants. Materials and methods: The study was performed on the tibia of 6 pigs. Three types of implants were investigated: group T-titanium implant, group Z-machined zirconia implant, group ZS-alumina sandblasting treated zirconia implant. Zirconia implants were manufactured from yttria-stabilized tetragonal zirconia polycrystalline (Acucera Inc., Pocheon, Korea). A total of 36 implants were installed in pigs' tibias. After 1, 4 and 12 weeks of healing period, the periotest and the histomorphometric analysis were performed. The data were analyzed using one-way ANOVA and significance was assessed by the Scheffe test (${\alpha}=.05$). Results: In the measurement of surface roughness, highest Ra value was measured in group T with significant difference. No significant differences were found among groups regarding Periotest values. After 1 week, in comparison of bone to implant contact (BIC), group Z showed higher value with significant difference. In comparison of bone area (BA), group T and group Z showed higher value with significant difference than group ZS. After 4 weeks, in comparison of BIC, group T showed higher value with significant difference. Comparison of BA showed no significant difference among each implant. After 12 weeks, the highest mean BIC values were found in group T with significant difference. Group ZS showed higher BIC value with significant difference than group Z. In comparison of BA, group T and group ZS showed higher value with significant difference than group Z. Conclusion: Zirconia implant showed low levels of osseointegration in this experiment. Modification of surface structure should be taken into consideration in designing zirconia implants to improve the success rate.

Effects of chromium chloride addition on coloration and mechanical properties of 3Y-TZP (크롬염화물 첨가에 따른 지르코니아 색상 및 물리적 성질 변화에 관한 연구)

  • Oh, Gye-Jeong;Seo, Yoon-Jeong;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Lee, Kyung-Ku;Lim, Tae-Kwan;Lee, Doh-Jae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.120-127
    • /
    • 2011
  • Purpose: The purpose of this study was to examine the effects of chromium chloride addition on coloration, mechanical property and microstructure of 3Y-TZP. Materials and methods: Chromium chloride was weighed as 0.06, 0.12, and 0.25 wt% and each measured amount was dissolved in alcohol. $ZrO_2$ powder was mixed with each of the individual slurry to prepare chromium doped zirconia specimen. The color, physical properties and microstructure were observed after the zirconia specimen were sintered at $1450^{\circ}C$. In order to evaluate the color, spectrophotometer was used to analyze the value of $L^*$, $C^*$, $a^*$ and $b^*$, after placing the specimen on a white plate, and measured according to the International Commission on Illumination (CIE) standard, Illuminant D65 and SCE system. The density was measured in the Archimedes method, while microstructures were evaluated by using the scanning electron microscopy (SEM) and XRD. Fracture toughness was calculated Vickers indentation method and indentation size was measured by using the optical microscope. The data were analyzed with 1-way ANOVA test (${\alpha}$ = 0.05). The Tukey multiple comparison test was used for post hocanalysis. Results: 1. Chromium chloride rendered zirconia a brownish color. While chromium chloride content was increased, the color of zirconia was changed from brownish to brownish-red. 2. Chromium chloride content was increased; density of the specimen was decreased. 3. More chromium chloride in the ratio showed increase size of grains. 4. But the addition of chromium chloride did not affect the crystal phase of zirconia, and all specimens showed tetragonal phase. 5. The chromium chloride in zirconia did not showed statistically significant difference in fracture toughness, but addition of 0.25 wt% showed a statistically significant difference (P<.05). Conclusion: Based on the above results, this study suggests that chromium chlorides can make colored zirconia while adding in a liquid form. The new colored zirconia showed a slight difference in color to that of the natural tooth, nevertheless this material can be used as an all ceramic core material.

(Effect of Monoclinic Zirconia and Tetragonal Zirconia Addition on Physical Properties and Electrical conductivity of $Al_2O_3$) ($Al_2O_3$의 물리적 성질 및 전기전도도에 미치는 단사정 지르코니아와 정방정 지르코니아의 첨가효과)

  • 박재성;어수해
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The effects of the addition of either monoclinic $ZrO_2$($ZrO_2$(m)) or tetragonal $ZrO_2$($ZrO_2$(t)) containing 5.35wt% $Y_2O_3$ on the physical properties and electrical conductivity of TEX>$Al_2O_3$ were investigated. The addition of $ZrO_2$(m) and $ZrO_2$(t) increased sintered density of $Al_2O_3$. The Vickers hardness also increased as addition of >($ZrO_2$(t) increased going through a maximum at 20wt% and the hardness of the specimens was found to be dependent on the sintered density. The addition of $ZrO_2$(t) improved the hardness of $Al_2O_3$-$ZrO_2$ systems and the $ZrO_2$(m) addition showed the better effect on the thermal shock property of $Al_2O_3$-$ZrO_2$ systems than that of the $ZrO_2$(t) addition. Above 15wt% addition of $ZrO_2$(t), the electrical conductivity is gradually increased with increasing applied voltage but not effects by addition of $ZrO_2$(m).

Synthesis and Characterization of Gd1-xSrxMnO3 as Cathodic Material for Solid Oxide Fuel Cell (고체산화물 연료전지의 양극재료로서 Gd1-xSrxMnO3의 합성 및 특성평가)

  • 윤희성;최승우;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.145-150
    • /
    • 1999
  • Gd1-xSrxMnO3(0$\leq$X$\leq$0.6) as the cathode for solid oxide fuel cell was synthesized by citrate process and studied for its crystal structure, electrical conductivity, thermal expansion coefficient (TEC), and investigated reactivity with 8 mol% yttria stabilized zirconia(8YSZ) or Ce0.8Gd0.2O1.9 (CGO). The crystal structure of Gd1-xSrxMnO3 changed from orthorhombic (0$\leq$X$\leq$0.3) through cubic (0.4$\leq$X$\leq$0.5) to tetragonal structure (X=0.6). When Sr contents was increased, the electrical conductivity of Gd1-xSrxMnO3 was inthose of La1-xSrxMnO3, 8YSZ and CGO if Sr content was above 30mol%. TEC of Gd1-xSrxMnO3 was increased with Sr content. After heat treatment at 1300$^{\circ}C$ for 48 hours, reaction product of Gd1-xSrxMnO3 and 8YSZ was SrZrO3. However CGO had no reaction product with Gd1-xSrxMnO3.

  • PDF

Sinterability of Low-Cost 3Y-ZrO2 Powder and Mechanical Properties of the Sintered Body

  • Kim, Min-Sung;Go, Shin-Il;Kim, Jin-Myung;Park, Young-Jo;Kim, Ha-Neul;Ko, Jae-Woong;Jung, Seung-Hwa;Kim, Jae-Yuk;Yun, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.285-291
    • /
    • 2017
  • This study investigated the effects of grain size and phase constitution on the mechanical properties of $3Y-ZrO_2$ by varying the sintering conditions. The raw powder prepared by a low-cost wet milling using the coarse solid oxide powders was sintered by both pressureless sintering and hot-pressing, respectively. As increasing holding time at $1450^{\circ}C$ for pressureless sintering, it promoted the microstructural coarsening of matrix grains and the phase transformation to tetragonal phase, whereas the bimodal microstructure embedded with abnormal $cubic-ZrO_2$ grains was observed regardless of sintering time. On the other hand, the specimens hot-pressed at $1300^{\circ}C$ for 2 h reached ~ 97% of relative density with homogeneous fine microstructure and mixed phase constitution. It was found that the proportion of untransformed monoclinic zirconia had the most adverse effect on the biaxial strength compared to the impacts of grain size and density. The pressureless sintering of the low-cost powder for prolonged sintering time to 8 h led to a decent combination of mechanical properties ($H_V=13.2GPa$, $K_{IC}=8.16MPa{\cdot}m^{1/2}$, ${\sigma}=981MPa$).

Effect of hydrofluoric acid-based etchant at an elevated temperature on the bond strength and surface topography of Y-TZP ceramics

  • Yu, Mi-Kyung;Lim, Myung-Jin;Na, Noo-Ri;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.1
    • /
    • pp.6.1-6.8
    • /
    • 2020
  • Objectives: This study investigated the effects of a hydrofluoric acid (HA; solution of hydrogen fluoride [HF] in water)-based smart etching (SE) solution at an elevated temperature on yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics in terms of bond strength and morphological changes. Materials and Methods: Eighty sintered Y-TZP specimens were prepared for shear bond strength (SBS) testing. The bonding surface of the Y-TZP specimens was treated with 37% phosphoric acid etching at 20℃-25℃, 4% HA etching at 20℃-25℃, or HA-based SE at 70℃-80℃. In all groups, zirconia primers were applied to the bonding surface of Y-TZP. For each group, 2 types of resin cement (with or without methacryloyloxydecyl dihydrogen phosphate [MDP]) were used. SBS testing was performed. Topographic changes of the etched Y-TZP surface were analyzed using scanning electron microscopy and atomic force microscopy. The results were analyzed and compared using 2-way analysis of variance. Results: Regardless of the type of resin cement, the highest bond strength was measured in the SE group, with significant differences compared to the other groups (p < 0.05). In all groups, MDP-containing resin cement yielded significantly higher bond strength values than MDP-free resin cement (p < 0.05). It was also shown that the Y-TZP surface was etched by the SE solution, causing a large change in the surface topography. Conclusions: Bond strength significantly improved when a heated HA-based SE solution was applied to the Y-TZP surface, and the etched Y-TZP surface was more irregular and had higher surface roughness.

Thermal Durability of 4YSZ Thermal Barrier Coating Deposited by Electron Beam PVD (전자빔을 이용한 물리기상증착법으로 제조된 열차폐용 4 mol% YSZ 코팅의 내열특성)

  • Park, Chanyoung;Yang, Younghwan;Kim, Seongwon;Lee, Sungmin;Kim, Hyungtae;Lim, Daesoon;Jang, Byungkoog;Oh, Yoonsuk
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.460-466
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings with $200{\mu}m$ thick are fabricated by Electron Beam Physical Vapor Deposition (EB-PVD) for thermal barrier coating (TBC). $150{\mu}m$ of NiCrAlY based bond coat is prepared by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. 4 mol% YSZ top coating shows typical tetragonal phase and columnar structure due to vapor phase deposition process. The adhesion strength of coating is measured about 40 MPa. There is no delamination or cracking of coatings after thermal cyclic fatigue and shock test at $850^{\circ}C$.

Mechanical Properties of (Y, Nb)-TZP/Alumina Composites for Dental Implant Abutments (치과 임플란트 상부구조물용 (Y, Nb)-TZP/알루미나 복합체의 기계적 물성)

  • 정형호;김대준;한중석;이득용
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.508-512
    • /
    • 2004
  • For abutment of dental implants, (Y, Nb)-TZP/Alumina composites were prepared by addition of 10-90 vol% alumina at an interval of 10 vol% into tetragonal zirconia solid solution which consists of 90.24 mol% Zr $O_2$, 5.31 mol% Y$_2$ $O_3$, and 4.45 mol% Nb$_2$O$\_$5/. Biaxial flexure strength and fracture toughness of composite were optimized by adding 10 vol% alumina, which resulted in 900 MPa and 8.9 MPam$\^$1/2/, respectively. The composite did not undergo low temperature degradation even after autoclave treatment at 200$^{\circ}C$ for 10 h. 65 of (Y, Nb)-TZP/Alumina composite abutments were employed into 40 patients and any adverse reaction, screw loosing, or fracture of abutments was not observed for the span of 2 years, indicating that the ceramic abutments can be safely used for restorations.

The effect of continuous application of MDP-containing primer and luting resin cement on bond strength to tribochemical silica-coated Y-TZP

  • Lim, Myung-Jin;Yu, Mi-Kyung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.19.1-19.10
    • /
    • 2018
  • Objectives: This study investigated the effect of continuous application of 10-methacryloyloxydecyldihydrogen phosphate (MDP)-containing primer and luting resin cement on bond strength to tribochemical silica-coated yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Materials and Methods: Forty bovine teeth and Y-TZP specimens were prepared. The dentin specimens were embedded in molds, with one side of the dentin exposed for cementation with the zirconia specimen. The Y-TZP specimen was prepared in the form of a cylinder with a diameter of 3 mm and a height of 10 mm. The bonding surface of the Y-TZP specimen was sandblasted with silica-coated aluminium oxide particles. The forty tribochemical silica-coated Y-TZP specimens were cemented to the bovine dentin (4 groups; n = 10) with either an MDP-free primer or an MDP-containing primer and either an MDP-free resin cement or an MDP-containing resin cement. After a shear bond strength (SBS) test, the data were analyzed using 1-way analysis of variance and the Tukey test (${\alpha}=0.05$). Results: The group with MDP-free primer and resin cement showed significantly lower SBS values than the MDP-containing groups (p < 0.05). Among the MDP-containing groups, the group with MDP-containing primer and resin cement showed significantly higher SBS values than the other groups (p < 0.05). Conclusions: The combination of MDP-containing primer and luting cement following tribochemical silica coating to Y-TZP was the best choice among the alternatives tested in this study.