• Title/Summary/Keyword: Tetragonal phase

Search Result 447, Processing Time 0.029 seconds

나노입자로 제조된 $BaTiO_3$ 유전체에서 첨가물질에 따른 전기적 특성 평가

  • U, Deok-Hyeon;Yun, Man-Sun;Eo, Sun-Cheol;Son, Yong-Ho;Gwon, Sun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.84-84
    • /
    • 2009
  • $BaTiO_3$는 perovskite 구조를 가지는 대표적인 강유전체 재료로서 MLCC (Multi Layer Ceramic Capacitor), PTC thermistor등에 널리 사용되어지고 있다. 최근 고용량 MLCC의 상업화와 함께 나노크기를 갖는 tetragonal phase의 $BaTiO_3$ 입자를 합성하기 위한 다양한 제조방법이 제시되고 있다. 또한 유전특성과 온도특성 및 신뢰성을 향상시키기 위해 많은 첨가제들이 연구되어지고 있다. 따라서 본 연구에서는 희토류 원소인 $Y_2O_3$를 첨가하여 유전특성 및 온도특성을 향상시키고자 하였다. 본 실험에서는 150nm 크기를 갖는 pure $BaTiO_3$ 분말을 사용하고 $Y_2O_3$의 양은 0.02 ~ 0.1wt%로 변수를 주어 첨가하였으며, 최적의 소결 조건을 찾기 위하여 1200, 1230, $1250^{\circ}C$에서 소결을 진행하였다. 실험방법으로는 균일한 혼합을 위하여 Iso-alcohol을 이용하여 48시간 ball-mill 하였으며 오븐에서 건조 후 ${\Phi}15$로 성형하여 소결을 진행하였다. 실험결과로는 $Y_2O_3$ 첨가량이 0.02wt% 부터 상온부터 상전이 온도 부근의 유전율 기울기는 완만해 지는 것을 확인할 수 있었으며, 소결시편의 정방정비 (tetragonality)도 뚜렷하게 나타났다. $Y_2O_3$ 첨가랑이 0.1 wt% 일 때는 첨가량의 증가로 인해 강유전성이 상쇄됨을 나타냈다. 이는 $2450^{\circ}C$에 이르는 매우 높은 용융온도와 $2350^{\circ}C$까지 상전이가 는 $Y_2O_3$를 미량 첨가할 때, 고온에서 높은 화학적 안정성과 내열성을 가져 온도 안정성이 향상된 것으로 판단된다.

  • PDF

NiSO4 Supported on FeO-promoted ZrO2 Catalyst for Ethylene Dimerization

  • Sohn, Jong-Rack;Kim, Young-Tae;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1749-1756
    • /
    • 2005
  • The $NiSO_4$ supported on FeO-promoted $ZrO_2$ catalysts were prepared by the impregnation method. FeOpromoted $ZrO_2$ was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. The addition of nickel sulfate (or FeO) to $ZrO_2$ shifted the phase transition of $ZrO_2$ (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or FeO) and $ZrO_2$. 10-$NiSO_4$/5-FeO-$ZrO_2$ containing 10 wt % $NiSO_4$ and 5 mol % FeO, and calcined at 500 ${^{\circ}C}$ exhibited a maximum catalytic activity for ethylene dimerization. $NiSO_4$/FeO-$ZrO_2$ catalysts was very effective for ethylene dimerization even at room temperature, but FeO-$ZrO_2$ without $NiSO_4$ did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of FeO up to 5 mol % enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between FeO and $ZrO_2$ and due to consequent formation of Fe-O-Zr bond.

Microstructures and Dielectric Properties of $BaTiO_3$ Ceramics Sintered with Glass Frit (Glass frit를 첨가한 $BaTiO_3$ 세라믹스의 유전 특성과 미세구조 변화 관찰)

  • Woo, Duck-Hyun;Son, Yong-Ho;Yoon, Man-Soon;Ur, Soon-Chul;Kweon, Soon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.172-172
    • /
    • 2009
  • $BaTiO_3$는 perovskite 구조를 가지는 대표적인 강유전체 재료로서 MLCC(Multi Layer Ceramic Capacitor), PTC thermistor등에 널리 사용되어지고 있다. 최근 고용량 MLCC 의 상업화와 함께 나노크기를 갖는 tetragonal phase의 $BaTiO_3$ 입자를 합성하기 위한 다양한 제조방법이 제시되고 있다. 또한 유전 특성과 온도특성 및 신뢰성을 향상시키기 위해 많은 첨가제들이 연구되어지고 있다. 따라서 이 번 연구에서는 선행 연구를 통해 얻어진 high energy mill을 이용한 고상반응법으로 제조된 $BaTiO_3$를 사용하였으며, 제조된 $BaTiO_3$ 분말에 glass frit를 첨가하여 소결온도 및 유전특성의 변화를 관찰하였다. 제조된 $BaTiO_3$ 분말은 200nm이하의 구형화와 균일한 입자크기를 보였으며, 선행연구를 통해 최적화된 glass frit의 양인 2.53wt%를 첨가하였고 1170, 1200, $1230^{\circ}C$에서 소결하여 소결온도에 따른 변화를 관찰하였다. 실험방법으로는 원료를 혼합하기 위하여 24시간 ball-mill을 이용하여 혼합하였으며, $\Phi15$로 성형하여 소결을 진행하였다. 실험진행 결과 모든 시편에서의 비유전율은 glass frit가 첨가되지 않은 조성보다 높게 나타났으며, $1200^{\circ}C$에서 소결한 시편의 비유전율($\varepsilon_r$)은 2300으로 glass frit가 첨가되지 않은 조성과 비교하여 21% 증가하여 최대치를 나타냈다. 또한 소결온도 $1200^{\circ}C$ 이상에서의 모든 시편에서는 95% 이상의 상대밀도를 나타내어, glass frit가 소결조제로써의 역할을 하는 것으로 나타났다. 따라서 본 연구를 통해 glass frit첨가로 인한 소결온도 감소 및 유전특성이 증가하는 것을 확인 하였다.

  • PDF

Preparations of PZT Ceramic by Solution Combustion Synthesis (용액연소합성방법에 의한 PZT세라믹의 제조)

  • 이상진;윤존도;권혁보;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.74-78
    • /
    • 2002
  • In this study, the solution combustion method was employed to synthesize perovskite PZT ceramics. Multicomponent oxides can be prepared by the solution combustion synthesis using redox exothermic reaction of precursor solutions. The results of DTA/TG showed exothermic peaks in 214$^{\circ}C$ and 350$^{\circ}C$. Those were caused by the differences of the thermal decomposition behavior of oxidizer and fuel. The combustion reaction was completed at 370$^{\circ}C$ during heating procedure, but the product was not transformed into perovskite. The thermal decomposition behavior of both oxidizer and fuel were considered during solution combustion process at 600$^{\circ}C$, which showed tetragonal single phase PZT ceramics with 50 nm crystalline size. The lattice constant a was 3.997 ${\pm}$ 0.001 ${\AA}$ and the lattice constant c was 4.147${\pm}$0.001 ${\AA}$.

Preparation of Zirconia Nanocrystalline Powder by the Hydrothemal Treatment at low Temperature (수열법에 의한 저온 결정형 지르코니아 나노 분말의 제조)

  • Noh, Hee-Jin;Lee, Jong-Kook;Seo, Dong-Seok;Hwang, Kyu-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.308-314
    • /
    • 2002
  • The nanocrystalline zirconia powder was synthesized from the zirconium hydroxide precipitate by hydrothermal process with the reaction temperature range 100∼250$^{\circ}$C, reaction time 1∼48 hours and additive concentration 1, 5 N NaOH solutions. The lower hydrothermal treatment temperature, the inner spherical tetragonal zirconia was synthesized. The fraction of monoclinic phase zirconia with rod shape increased with increasing the hydrothermal treatment temperature. As the concentration of the NaOH solution increases, the synthesized particle in breadth and length increased; breadth and length ratio decreased. In the case of the low concentration of NaOH solution, however, the particle length became relatively larger than its breadth resulting in the rod-shaped particles with bigger aspect ratio.

The flexural strength Changes by the Low Temperature Degradation of Uncolored zirconia Ceramic for All Ceramic Restoration (전부도재 수복을 위한 무색지르코니아 세라믹의 저온열화에 따른 굴곡강도 변화)

  • Kim, Jung-Sook
    • Journal of Technologic Dentistry
    • /
    • v.31 no.2
    • /
    • pp.39-44
    • /
    • 2009
  • In the orthopedic field which firstly used zirconia as artificial joints, researchers had studied the reasons for collapsing zirconia used as restorative material by accumulated inner cracks in several years and they found out Low Temperature Degradation is one of the reasons. In the dentistry field, it has not been too long since they used zirconia as the cores of all-ceramic restoration; however, the study is needed as prophylactic measure against Low Temperature Degradation which can be caused by saliva wetting the mouth all the time and frictional forces such as bite pressure and masticatory pressure. Artificial aging by autoclaving is used because there are difficulties of testing in the patient's mouth. To study the changes in the material properties, the flexural strength of dental zirconia ceramic is measured before and after the test. The following are the result of the test. 1) The zirconia blocks in the autoclaves at $130^{\circ}C$ and $200^{\circ}C$ are phase-shifted tetragonal to monoclinic by Low Temperature Degradation. 2)The non-autoclaved specimens have the average fractural strength of 1346.4MPa, the specimens autoclaved at $130^{\circ}C$ have 1226.4Mpa and the specimens autoclaved at $200^{\circ}C$ have 1024.1MPa. The tests show that as the temperature increases, the flexural strength tend to decrease and the differences are noticeable(p<0.001). 3)Through the Duncan's post-hoc test, the differences in flexural strength of the 3 groups were listed in order of strength like normal temperature>at $130^{\circ}C$ autoclave low temperature degradation> at $200^{\circ}C$ autoclave low temperature degradation.

  • PDF

Characteristics of CuO doped WO3-SnO2 Thick Film Gas Sensors (CuO가 첨가된 WO3-SnO2 후막 가스센서 특성 연구)

  • Lee, Don-Kyu;Shin, Deuck-Jin;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.956-960
    • /
    • 2010
  • CuO doped $WO_3-SnO_2$ thick film gas sensors were fabricated by screen printing method on alumina substrates and heat-treated at $350^{\circ}C$ in air. The effects of mixing ratio of $WO_3$ with $SnO_2$ on the structural and morphological properties of $WO_3-SnO_2$ were investigated X-ray diffraction and Scanning Electron Microscope. The structural properties of the $WO_3-SnO_2$:CuO thick film by XRD showed that the monoclinic of $WO_3$ and the tetragonal of $SnO_2$ phase were mixed. Nano CuO was coated on the $WO_3-SnO_2$ surface and then the surface of $WO_3$ was coated with $SnO_2$ particles with $1\sim1.5{\mu}m$ in diameters, as confirmed form the SEM image. The sensitivity of the $WO_3-SnO_2$:CuO sensor to 2000 ppm $CO_2$ gas and 50 ppm $H_2S$ gas for the various ratio of $WO_3$ and $SnO_2$ was investigated. The 4 wt% CuO doped $WO_3-SnO_2$(75:25) tkick films showed the highest sensitivity to $CO_2$ gas and $H_2S$ gas.

Dielectric Relaxation Properties of KNN-BT Ceramics with (Ba,Ca)SiO3 Glass Frit ((Ba,Ca)SiO3 Glass Frit 첨가에 따른 NKN-BT 세라믹스의 유전 완화 특성)

  • Bae, Seon Gi;Shin, Hyeo-Kyung;Lee, Seung-Hwan;Im, In-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.367-371
    • /
    • 2014
  • We investigated dielectric relaxation properties of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics by addition (0~0.3 wt%) of $(Ba,Ca)SiO_3$ glass frit. All composition of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ added $(Ba,Ca)SiO_3$ glass frit showed the same crystallographic properties, coexistence of orthorhombic and tetragonal phase. By increasing addition of $(Ba,Ca)SiO_3$ glass frit, the Curie temperatures of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics were decreased, whereas maximum dielectric constants of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics were dramatically increased. Especially the deviations of Curie temperature $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics were increased by increasing amount of $(Ba,Ca)SiO_3$ glass frit, and it indicated that $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics added $(Ba,Ca)SiO_3$ glass frit have relaxor characteristics.

Effect of LaFeO3 Doping on the Ferroelectric and Piezoelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3 Lead-Free Piezoceramics (LaFeO3 함량에 따른 (1-x)Bi0.5(Na0.78K0.22)0.5TiO3-xLaFeO3의 강유전, 압전 특성)

  • Park, Chun-Kil;Lim, Ji-Ho;Park, Jung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.157-161
    • /
    • 2017
  • $(1-x)Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3-xLaFeO_3$ ceramics were fabricated using a solid state reaction method. The microstructural, ferroelectric and piezoelectric properties were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), and polarization hysteresis loops (P-E). XRD results indicated that BNKT ceramic crystal structure modified by $LaFeO_3$ was transformed from a ferroelectric tetragonal to a non-polar pesudo-cubic phase with increased $LaFeO_3$ content. The improved piezoelectric properties resulted from the addition of $LaFeO_3$ up to 3 mol%. The $LaFeO_3$ 3mol% sample showed markedly improved piezoelectric and strain behaviors in comparison with pure BNKT ceramic.

Characteristics and Preparation of Gas Sensors Using Nano SnO2:CNT (나노 SnO2:CNT를 이용한 가스센서의 제작 및 특성연구)

  • Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.468-471
    • /
    • 2016
  • $SnO_2:CNT$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and were annealed at $300^{\circ}C$ in air. The nano $SnO_2$ powders were prepared by solution reduction method using tin chloride ($SnCl_2.2H_2O$), hydrazine ($N_2H_4$) and NaOH. Nano $SnO_2:CNT$ sensing materials were prepared by ball-milling for 24h. The weight range of CNT addition on the $SnO_2$ surface was from 0 to 10 %. The structural and morphological properties of these sensing material were investigated using X-ray diffraction and scanning electron microscopy and transmission electron microscope. The structural properties of the $SnO_2:CNT$ sensing materials showed a tetragonal phase with (110), (101), and (211) dominant orientations. No XRD peaks corresponding to CNT were observed in the $SnO_2:CNT$ powders. The particle size of the $SnO_2:CNT$ sensing materials was about 5~10 nm. The sensing characteristics of the $SnO_2:CNT$ thick films for 5 ppm $H_2S$ gas were investigated by comparing the electrical resistance in air with that in the target gases of each sensor in a test box. The results showed that the maximum sensitivity of the $SnO_2:CNT$ gas sensors at room temperature was observed when the CNT concentration was 8wt%.