• Title/Summary/Keyword: Tetraethylammonium

Search Result 122, Processing Time 1.098 seconds

Effects of Diospyros kaki L. Radix or Diospyros kaki L. Folium on Arterial Contraction Induced by Phenylephrine in Rabbit (시근과 시엽이 Phenylephrine으로 유발된 가토의 수축혈관에 미치는 영향)

  • 김희철;남창규;김호현;성현제
    • The Journal of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.141-154
    • /
    • 2003
  • Objectives : This study was undertaken to define the effect of Diospyros kaki L. Radix or Diospyros kaki L. Folium on phenylephrine-induced arterial contraction and the mechanism of Diospyros kaki L. Radix or Diospyros kaki L. Foliuminduced relaxation. Methods : In order to investigate the effect of Diospyros kaki L. Radix or Diospyros kaki L. Folium on contracted rabbit carotid arterial strips, transverse strips with intact or damaged endothelium were used for the experiment using organ bath. Diospyros kaki L. Radix or Diospyros kaki L. Folium extract was infused into contracted arterial strips induced by phenylephrine. To analyze the mechanism of Diospyros kaki L. Radix or Diospyros kaki L. Folium-induced relaxation, Diospyros kaki L. Radix or Diospyros kaki L. Folium extract was infused into contracted arterial strips induced by phenylephrine after treatment with indomethacin, $N{\omega}-nitro-L-arginine$, methylene blue or tetraethylammonium chloride, and $Ca^{2+}$ was infused into contracted arterial strips induced by phenylephrine after treatment of Diospyros kaki L. Radix or Diospyros kaki L. Folium in a $Ca^{2+}$-free solution. Results : Diospyros kaki L. Radix or Diospyros kaki L. Folium showed relaxation effect on arterial strip with endothelium contracted by phenylephrine, but in the strips without endothelium, Diospyros kaki L. Radix or Diospyros kaki L. Folium-induced relaxation was significantly inhibited. The endothelium-dependent relaxation induced by Diospyros kaki L. Radix or Diospyros kaki L. Folium was decreased by pretreatment with $N{\omega}-nitro-L-arginine$ or methylene blue but it was not observed in the strips pretreated with indomethacin or tetraethylammonium chloride. When $Ca^{2+}$ was applied to the strips which were contracted by phenylephrine in a $Ca^{2+}$-free solution, arterial contraction was increased. However, pretreatment with Diospyros kaki L. Radix or Diospyros kaki L. Folium inhibited contractile response to $Ca^{2+}$. Conclusions : Diospyros kaki L. Radix or Diospyros kaki L. Folium may suppress influx of extra- cellular $Ca^{2+}$ through the formation of nitric oxide in the vascular endothelial cells.

  • PDF

Nitric oxide(NO)-mediated relaxation of bovine retractor penis muscle (소 음경후인근의 Nitric oxide(NO) 매개성 이완)

  • Yang, Il-suk;Chang, Hee-jung;Kang, Tong-mook;Lee, Jang-hern
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.599-605
    • /
    • 1996
  • This study was designed to examine the mechanism of penile erection in adult bull by analyzing the responses of bovine proximal retractor penile muscle strips(BRP) to electtical field stimulation(EFS), exogenous nitric oxide(NO), NO synthesis precursor(L-arginine), NO synthase inhibitors(L-NAME, L-NMMA), guanylate cyclase inhibitor(methylene blue) and nonspecific potassium channel blocker(tetraethylammonium, TEA) treatments. Isometric tension of BRP was measured using physiograph. Results were summarized as follows: 1. EFS of nonadrenergic noncholinrgic(NANC) nerve in BRP produced frequency-dependent inhibitory responses to the contraction induced by co-treatment of epinephrine, guanethidine and atropine. The inhibitory responses to EFS were blocked by tetrodotoxin(TTX, $1{\mu}M$). 2. Treatment of L-NAME ($10,\;20{\mu}M$) inhibited the relaxation to EFS whereas L-NMMA ($100{\mu}M$) had no effect. 3. Treatment of NO($20,\;40{\mu}M$; as an acidified solution of $NaNO_2$) induced concentration-dependent relaxation whereas preincubation of TTX($1{\mu}M$) and L-NAME($20{\mu}M$) had no effect on the relaxation response. 4. L-arginine treatment(10mM) blocked the inhibitory effect of L-NAME($20{\mu}M$). 5. Pretreatment of methylene blue($40{\mu}M$) reduced the NANC-induced relaxation of BRP. 6. Tetraethylammonium(TEA, 80mM) reduced NANC relaxation. These results suggest that NO may act as a NANC neurotransmitter in BRP and the effects might be mediated by cGMP and potassium channel.

  • PDF

Effects of SoPung-Tang extract on Hypertension and Common Carotid Artery (소풍탕(疎風湯)이 고혈압과 동맥혈관에 미치는 영향)

  • Choe Seok-Jin;Kim Hee-Taek;Jo Hak-Jun;Kim Ho-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1622-1628
    • /
    • 2005
  • This study was undertaken to define the effect of SoPung-Tang extract on hypertension in spontaneous hypertensive rat and norepinephrine- induced arterial contraction in rabbit. In order to investigate the effect of SoPung-Tang extract on contracted rabbit carotid arterial strips, transverse strips with intact or damaged endothelium were used for the experiment using organ bath. To analyze the mechanism of SoPung-Tang extract-induced relaxation, SoPung-Tang extract infused into contracted arterial strips induced by norepinephrine after treatment of indomethacin, Nu-nitro-L-arginine, methylene blue or tetraethylammonium chloride. Blood pressure was significantly decreased five days after administration of SoPung-Tang extract. SoPung-Tang extract relax arterial strip with endothelium contracted by norepinephrine, but in the strips without endothelium, SoPung-Tang extract- induced relaxation was significantly inhibited. SoPung-Tang relax arterial strip contracted by norepinephrine, but in the strips contracted by high $K^+$, SoPung-Tang extract-induced relaxation was significantly inhibited. The endothelium-dependent relaxation induced by SoPung-Tang extract was decreased by the pre-treatment of $N{\omega}$-nitro-L-arginine or methylene blue, but it was not observed in the strips pre-treated with indomethacin or tetraethylammonium chloride. When $Ca^{2+}$ was applied, the strips which were contracted by norepinephrine in a $Ca^{2+}$-free solution, arterial contraction was increased. But pre-treatment of SoPung-Tang extract inhibited contractile response to $Ca^{2+}$. We suggest that SoPung-Tang could be applied effectively for hypertension and may suppress influx of extra-cellular $Ca^{2+}$ through the formation of nitric oxide in the vascular endothelial cells.

Synthesis of Tridentate Schiff base Molybdenum(Ⅴ) Complexes and Their Electrochemical Properties in Aprotic Solvents (세자리 Schiff base 몰리브데늄(Ⅴ) 착물들의 합성과 비수용매에서의 전기화학적 성질)

  • Choi, Young-Kook;Song, Mi-Sook;Rim, Chae-Pyeong;Chjo, Ki-Hyung
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 1995
  • Tridentate Schiff base molybdenum(V) complexes such as [Mo(Ⅴ)2O(SOHB)4], [Mo(Ⅴ)2O3(SOIP)2(NCS)2] and [Mo(Ⅴ)2O3(SOTB)2(H20)2](SOHB: Salicylidene-o-imino hydroxybenzene, SOIP; Salicylidene-o-imino pyridine, SOTB; Salicylidene-o-imino thiolbenzene) were synthesized and identified by elemental analysis, spectroscopy, and thermogravimetric analysis (TGA). It was found that the mole ratio of Schiff base ligand to the metal in these complexes is 1 : 1 or 1 : 2. The redox processes of the complexes were investigated by cyclic voltammetric and differential pulse polarographic techniques in nonaquous solvent containing 0.1 M tetraethylammonium perchlorate (TEAP) as supporting electrolyte at glassy carbon electrode. It was found that diffusion controlled reduction processes with one electron were Mo(Ⅴ)Mo(Ⅴ)e-→ Mo(Ⅴ)Mo(Ⅳ)e-→Mo(Ⅳ)Mo(Ⅳ)e-→Mo(Ⅳ)Mo(Ⅲ).

  • PDF

Taurine relaxes human radial artery through potassium channel opening action

  • Ulusoy, Kemal Gokhan;Kaya, Erkan;Karabacak, Kubilay;Seyrek, Melik;Duvan, ibrahim;Yildirim, Vedat;Yildiz, Oguzhan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.617-623
    • /
    • 2017
  • The vascular actions and mechanisms of taurine were investigated in the isolated human radial artery (RA). RA rings were suspended in isolated organ baths and tension was recorded isometrically. First, a precontraction was achieved by adding potassium chloride (KCl, 45 mM) or serotonin (5-hydroxytryptamine, 5-HT, $30{\mu}M$) to organ baths. When the precontractions were stable, taurine (20, 40, 80 mM) was added cumulatively. Antagonistic effect of taurine on calcium chloride ($10{\mu}M$ to 10 mM) -induced contractions was investigated. Taurine-induced relaxations were also tested in the presence of the $K^+$ channel inhibitors tetraethylammonium (1 mM), glibenclamide ($10{\mu}M$) and 4-aminopyridine (1 mM). Taurine did not affect the basal tone but inhibited the contraction induced by 5-HT and KCl. Calcium chloride-induced contractions were significantly inhibited in the presence of taurine (20, 40, 80 mM) (p<0.05). The relaxation to taurine was inhibited by tetraethylammonium (p<0.05). However, glibenclamide and 4-aminopyridine did not affect taurine -induced relaxations. Present experiments show that taurine inhibits 5-HT and KCl -induced contractions in RA, and suggest that large conductance $Ca^{2+}$-activated $K^+$ channels may be involved in taurine -induced relaxation of RA.

Effects of Linderae Radix extract on Arterial Contraction in Rabbit (오약(烏藥)이 토끼의 수축혈관에 미치는 영향)

  • Lee, Hyun-Ju;Jo, Hak-Jun;Kim, Ho-Hyun
    • Korean Journal of Oriental Medicine
    • /
    • v.11 no.1
    • /
    • pp.97-107
    • /
    • 2005
  • Objectives : This experiments were performed to determine the effect of Linderae Radix extract on norepinephrine-induced arterial contraction in rabbit. Methods : In order to investigate the effect of Linderae Radix extract on contracted rabbit carotid arterial strips, transverse strips with intact or damaged endothelium were used for the experiment using organ bath. To analyze the mechanism of Linderae Radix extract-induced relaxation, Linderae Radix extract infused into contracted arterial strips induced by norepinephrine after treatment of indomethacin, tetraethylammonium chloride, $N{\omega}-nitro-L-arginine$ or methylene blue. Results : Linderae Radix extract relax arterial strip with endothelium contracted by norepinephrine, but in the strips without endothelium, Linderae Radix extract-induced relaxation was significantly inhibited. Linderae Radix extract-induced relaxation was decreased by the pre-treatment of $N{\omega}-nitro-L-arginine$ or methylene blue, but it was not observed in the strips pre-treated with indomethacin or tetraethylammonium chloride. When $Ca^{2+}$ was applied, the strips which were contracted by norepinephrine in a $Ca^{2+}$-free solution, arterial contraction was increased. But pre-treatment of Linderae Radix extract inhibited contractile response to norepinephrine and $Ca^{2+}$. Conclusions : We suggest that Linderae Radix may suppress influx of extra-cellular $Ca^{2+}$ through the formation of nitric oxide, and release of intra-cellular $Ca^{2+}$.

  • PDF

Effects of OYakSoonGi-San extract on Hypertension and Common Carotid Artery (오약순기산(烏藥順氣散)이 고혈압과 동맥혈관에 미치는 영향)

  • Shin, Hyung-Sup;Ko, Heung;Kim, Ho-Hyun
    • Korean Journal of Oriental Medicine
    • /
    • v.10 no.2
    • /
    • pp.79-92
    • /
    • 2004
  • Objectives : This experiments were performed to determine the effect of OYakSoonGi-San extract on hypertension in spontaneous hypertensive rat and norepinephrine-induced arterial contraction in rabbit. Methods : In order to define the effect of OYakSoonGi-San extract on contracted rabbit carotid arterial strips, transverse strips with intact or damaged endothelium were used for the experiment using organ bath. To analyze the mechanism of OYakSoonGi-San extract-induced relaxation, OYakSoonGi-San extract infused into contracted arterial strips induced by norepinephrine after treatment of indomethacin, $N{\omega}-nitro-L-arginine$, methylene blue or tetraethylammonium chloride. Results : Blood pressure was significantly decreased five days after administration of OYakSoonGi-San extract. The relaxation effect of OYakSoonGi-San extract was dependent on the presence of endothelium, showing that OYakSoonGi-San extract-induced relaxation was not observed in the strips without endothelium. Also OYakSoonGi-San extract-induced relaxation was significantly inhibited in arterial strips which were contracted by high $K^+$. OYakSoonGi-San extract-indeced relaxation was significantly inhibited by the pre-treatment of $N{\omega}-nitro-L-arginine$ or methylene blue, but it was not observed in the strips pre-treated with indomethacin or tetraethylammonium chloride. When additive application of $Ca^{2+}$ in arterial strips which were pre-contracted by norepinephrine in a $Ca^{2+}$-free solution, arterial contraction was increased. But contractile response to $Ca^{2+}$ was attenuated by pre-treatment of OYakSoonGi-San extract. Conclusions : These results demonstrated that OYakSoonGi-San could be applied effectively to hypertension and may inhibit agonist-induced contraction through an decrease influx of extra-cellular $Ca^{2+}$ by the formation of nitric oxide in the vascular endothelial cells.

  • PDF

Transepithelial Transport of Organic Cation and Its Inhibition by Sulfhydryl and Carboxyl Reagents in Opossum Kidney Cell Monolayer

  • Woo, Jae-Suk;Oh, Se-Ok;Jung, Jin-Sup;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.53-62
    • /
    • 1996
  • Transepithelial transport of tetraethylammonium (TEA) was studied in monolayers of opossum kidney cells cultured on permeable membrane filters. $[^{14}C]-TEA$ was transported across the OK cell monolayer from basolateral to apical side by a saturable process which can be stimulated by acidification of the apical medium. The apparent Michaelis-Menten constant $(K_{m})$ and the maximum velocity$(V_{max})$ for the transport were $41\;{\mu}M$ and 147 pmole/ mg protein/ min, respectively. The transport was significantly inhibited by unlabelled TEA, amiloride, cimetidine, choline, and mepiperphenidol added to the basolateral side at 1 mM and was slightly inhibited by 5 mM $N_{1}-methylnicotinamide\;(NMN).$ Unlabelled TEA added to the apical side stimulated the $basolateral-to-apical\;{^{14}C}-TEA$ transport, suggesting that the TEA self-exchange mechanism was involved at the apical membrane. Sulfhydryl reagents such as ${\rho}-chloromercuribenzoic\;acid\;(PCMB)\;and \;{\rho}-chloro-mercuribenzene\;sulfonate \;(PCMBS)$ and carboxyl reagents such as N,N'-dicyclohexylcarbodiimidem (DCCD) and N-ethoxy-carbonyl-2-ethoxy-1,2-dihydro-quinoline(EEDQ) inhibited the TEA transport at both the basolateral and apical membranes of the OK cell monolayer. These results suggest that OK cell monolayers possess a vectorial transport system for organic cations which is similar to that for organic cation secretion in the renal proximal tubule.

  • PDF

Effect of PCMB on Organic Ion Transport in Rabbit Renal Cortical Slices (토끼 신피질 절편에서 PCMB가 유기이온의 이동에 미치는 영향)

  • Park, In-Cheol;Kim, Tae-In;Jung, Dong-Keun;Kim, Young-Keun
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.345-352
    • /
    • 1990
  • To determine the role of sulfhydryl group in transport of organic ions across the basolateral membrane of renal proximal tubules, effect of p-chloromercuribenzoic acid (PCMB) on the transport of tetraethylammonium (TEA) and p-aminohippurate (PAH) was studied in rabbit renal cortical slices. PCMB caused irreversible inhibition of TEA and PAH uptake in a dose-dependent manner, with $I_{50}$ value (concentration for 50% inhibition) of $30\;{\mu}M$ for TEA and $75\;{\mu}M$ for PAH. Kinetic analysis of TEA and PAH uptakes showed that PCMB decreased Vmax $(62.35\;vs.\;28.32\;n\;mole/g{\cdot}min\;fur\;TEA:\;385.24\;vs.\;170.36\;n\;mole/g{\cdot}min\;for\;PAH)$ without changing Km. The inhibitory action of PCMB on TEA and PAH uptakes was independent of pH of the pretreatment medium. The inhibitory effect of PCMB on the uptake of TEA or PAH was prevented by dithiothreitol, but not by the substrate. PCMB inhibited Na-K-ATPase activity in a dose-dependent manner with $I_{50}$ value of $50\;{\mu}M$, which is similar to those for TEA and PAH uptake. These results suggest that PCMB inhibits the transport of organic cations and anions in the renal basolateral membrane by directly affecting the SH-group in the transporter molecules or secondly by altering the Na-K-ATPase activity.

  • PDF

Ethanol inhibits Kv7.2/7.3 channel open probability by reducing the PI(4,5)P2 sensitivity of Kv7.2 subunit

  • Kim, Kwon-Woo;Suh, Byung-Chang
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.311-316
    • /
    • 2021
  • Ethanol often causes critical health problems by altering the neuronal activities of the central and peripheral nerve systems. One of the cellular targets of ethanol is the plasma membrane proteins including ion channels and receptors. Recently, we reported that ethanol elevates membrane excitability in sympathetic neurons by inhibiting Kv7.2/7.3 channels in a cell type-specific manner. Even though our studies revealed that the inhibitory effects of ethanol on the Kv7.2/7.3 channel was diminished by the increase of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the molecular mechanism of ethanol on Kv7.2/7.3 channel inhibition remains unclear. By investigating the kinetics of Kv7.2/7.3 current in high K+ solution, we found that ethanol inhibited Kv7.2/7.3 channels through a mechanism distinct from that of tetraethylammonium (TEA) which enters into the pore and blocks the gate of the channels. Using a non-stationary noise analysis (NSNA), we demonstrated that the inhibitory effect of ethanol is the result of reduction of open probability (PO) of the Kv7.2/7.3 channel, but not of a single channel current (i) or channel number (N). Finally, ethanol selectively facilitated the kinetics of Kv7.2 current suppression by voltage-sensing phosphatase (VSP)-induced PI(4,5)P2 depletion, while it slowed down Kv7.2 current recovery from the VSP-induced inhibition. Together our results suggest that ethanol regulates neuronal activity through the reduction of open probability and PI(4,5)P2 sensitivity of Kv7.2/7.3 channels.