• 제목/요약/키워드: Test-bed AUV

검색결과 11건 처리시간 0.022초

자율 무인 잠수정(AUV)의 모의 실험을 위한 테스트베드의 개발-하드웨어와 소프트웨어 (Development of a Test-Bed Autonomous Underwater Vehicle for Tank Test-Hardware and Software)

  • 이판묵;전봉환;정성욱
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.106-112
    • /
    • 1997
  • This paper describes the development of a test-bed vehicle named TAUV which can be a tool to evaluate the performance of a new control algorithm, operating software and the characteristics of sensors for an AUV. The test-bed AUV is designed to operate at depth of ten meters. It is 19.5kg in air and neural buoyancy in water and the dimension is $535{\times}400{\times}102mm$. TAUV is equipped with a magnetic compass, a biazial inclinometer, a rate gyro, a pressure sensor and an altitude sonae for measuring the motion of the vehicle. Two horizoltal thursters and two elevators are installed in order to propel and control the AUV. This paper persents the control system of TAUV which is based on a 16 bit single-chip microprocessor, 80c196kc, and the software architecture for the operating system. Experimental results are included to verify the performance of the TAUV.

  • PDF

개방형 제어 플랫폼 기반 호버링형 무인잠수정 테스트베드 설계 및 성능평가 (Design of a Test bed and Performance Evaluation for a Hovering Type Autonomous Underwater Vehicle under Open Control Platform)

  • 최재원;하태규;;유창호;서영봉
    • 제어로봇시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.489-497
    • /
    • 2010
  • This paper presents the design of hardware platform, which is a test bed for the navigation system and hovering type AUV (Autonomous Underwater Vehicle) under the OCP (Open Control Platform). The developed AUV test bed consists of two hulls, four thrusters, and the navigation system which uses a SBC2440II with IMU (Inertial Measurement Unit). And the SMC (Sliding Mode Control) is chosen for the diving and steering control of the AUV. This paper uses ACE/TAO RTEC (Real-Time Event Channel) as a middleware platform in order to control and communicate in the developed AUV test bed. In this paper, two computers are used and each of them is dedicated for the specific purpose, the first computer is used as the SMC module and the middleware platform for the ACE/TAO RTEC and the second computer is used for the sensor controller. We analyze the performance of the AUV test bed under the OCP.

회전팔 추진기를 가진 시험용 HAUV의 설계 및 구현 (Design and Implementation of A Hovering AUV with A Rotatable-Arm Thruster)

  • 신동협;배설봉;주문갑;백운경
    • 대한임베디드공학회논문지
    • /
    • 제9권3호
    • /
    • pp.165-171
    • /
    • 2014
  • In this paper, we propose the hardware and software of a test-bed of a hovering AUV (autonomous underwater vehicle). Test-bed to develop as the underwater robot for the hovering -type is planning to apply for marine resource development and exploration for deep sea. The RTU that controls a azimuth thruster and a vertical thruster of test-bed is a intergrated-type thruster. The main control unit that collects sensor's data and performs high-speed processing and controls a movement of test-bed is a underwater hybrid navigation system. Also it transfers position, posture, state information of test-bed to the host PC of user using a wireless communication. The host PC checks a test-bed in real time by using a realtime monitoring system that is implemented by LabVIEW.

Development of the Hovering AUV test-bed and field test

  • Choi, Hyeung-Sik;Cho, Sohyung;Kim, Joon-Young
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권1호
    • /
    • pp.40-47
    • /
    • 2016
  • This paper describes the design and performance of a hovering AUV constructed at KMOU (Korea Maritime and Ocean University). Before the field test, we analyzed the dynamic performance of the AUV using a simulation program made by Matlab & Simulink. Also, a PID controller was designed to control the thrusters. Using 4 thrusters (2 vertical and 2 horizontal), the AUV could be controlled using dynamic motion with 4-DOF. A simulation and field test were conducted with way-point tracking, maintaining the desired depth. To perform way-point tracking, the AUV can be fine-tuned to the desired heading angle through the LOS (Line Of Sight) method. This paper shows the results of simulation and field tests.

Development of Hovering AUV Test-bed for Underwater Explorations and Operations

  • Byun, Seung-Woo;Choi, Hyeung-Sik;Kim, Joon-Young
    • International Journal of Ocean System Engineering
    • /
    • 제3권4호
    • /
    • pp.218-224
    • /
    • 2013
  • This paper describes the design and control of a hovering AUV test-bed and analyzes the dynamic performance of the vehicle using simulation programs. The main purpose of this vehicle is to carry out fundamental tests of its station keeping, attitude control, and desired position tracking. Its configuration is similar to the general appearance of an ROV for underwater operations, and its dimensions are $0.75m{\times}0.5m{\times}0.5m$. It has four 450-W thrusters for longitudinal/lateral/vertical propulsion and is equipped with a pressure sensor for measuring the water depth and a magnetic compass for measuring its heading angle. The navigation of the vehicle is controlled by an onboard Pentium III-class computer, which runs with the help of the Windows XP operating system. This provides an appropriate environment for developing the various algorithms needed for developing and advancing a hovering AUV.

소형무인잠수정(AUV) 이심이의 개발 및 시험 (Development and Trials of an Small Autonomous Underwater Vehicle 'ISiMI')

  • 전봉환;박진영;이판묵;이필엽;이종무;오준호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.347-350
    • /
    • 2006
  • Maritime and Ocean Engineering Research Institute (MOERI), a branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) named ISiMI(Integrated Submergible for Intelligent Mission Implementation). ISiMI is an AUV platform to satisfy the various needs of experimental test required for development of challenging technologies newly investigated in the field of underwater robot; control and navigational algorithms and software architectures. The main design goal of ISiMI AUV is downsizing which will reduce substantially the operating cost compared to other vehicles previously developed in KORDI such as VORAM or DUSAUV. As a result of design and manufacturing process, ISiMI is implemented to be 1.2m in length, 0.17m in diameter and weigh 20 kg in air. A series of tank test is conducted to verify the basic functions of ISiMI in the Ocean Engineering Basin of MOERI, which includes manual control with R/F link, auto depth, auto heading control and a final approach control for underwater docking. This paper describes the implementation of ISiMI system and the experimental results to verify the function of ISiMi as a test-bed AUV platform.

  • PDF

호버링 타입 자율무인잠수정 'OCTAGON'의 테스트베드 개발 (Development of hovering-type AUV test-bed 'OCTAGON')

  • 최동호;이영진;홍승민;김준영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권6호
    • /
    • pp.516-526
    • /
    • 2016
  • 본 논문은 연구용으로 개발된 호버링 타입 무인잠수정을 소개하고 기본적인 운동성능에 대한 시뮬레이션 및 실해역 실험결과를 서술하였다. 본 연구에서 개발된 무인잠수정은 수평 및 수직 추진기를 이용하여 4자유도 운동을 제어 할 수 있으며, 실험이 용이하고 운용하기 쉬운 구조의 테스트 베드용으로 설계하였다. 본 논문에서는 실해역 실험 이전에 무인잠수정의 6자유도 운동방정식을 전개하고 Matlab/Simulink를 이용하여 시뮬레이션 프로그램를 구성하였으며, 이를 통하여 설계된 무인잠수정의 기본적인 운동성능을 확인하였다. 또한 무인잠수정이 주어진 임무를 수행하기 위하여 PID 제어기 및 Fuzzy PID 제어기를 설계하였고 설계된 제어기의 성능을 시뮬레이션을 통하여 확인하였다. 실제 제작된 무인잠수정의 운동성능을 확인하기 위해 실해역에서 실험을 수행하였으며, 설계된 PID 제어기 및 Fuzzy PID 제어기를 이용하여 경유점 제어를 수행하였고 그 결과 조류 외란이 존재하는 실해역 상에서 적절한 제어성능을 확인 할 수 있었다.

자율무인잠수정 테스트베드 이심이의 개발과 수조시험 (Development and Tank Test of an Autonomous Underwater Vehicle 'ISiMI')

  • 전봉환;박진영;이판묵;이필엽;오준호
    • 한국해양공학회지
    • /
    • 제21권2호
    • /
    • pp.67-74
    • /
    • 2007
  • Maritime and Ocean Engineering Research Institute (MOERI), a branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) named ISiMI (Integrated Submergible for Intelligent Mission Implementation). ISiMI is an AUV platform to satisfy the various needs of experimental test required for development of challenging technologies newly investigated in the field of underwater robot; control and navigational algorithms and software architectures. The main design goal of ISiMI AUV is downsizing which will reduce substantially the operating cost compared to other vehicles previously developed in KORDI such as VORAM or DUSAUV. As a result of design and manufacturing process, ISiMI is implemented to be 1.2 m in length, 0.17 m in diameter and weigh 20 kg in air. A series of tank test is conducted to verify the basic functions of ISiMI in the Ocean Engineering Basin of MOERI, which includes manual control with R/F link, auto depth, auto heading control and a final approach control for underwater docking. This paper describes the implementation of ISiMI system and the experimental results to verify the function of ISiMI as a test-bed AUV platform.

수중탐사용 호버링 무인잠수정 NOAH의 테스트베드 개발 (Development of Hovering AUV 'NOAH' Test-bed for Underwater Explorations)

  • 변승우;김준영
    • 한국산학기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.414-419
    • /
    • 2010
  • 본 논문은 호버링 무인잠수정 'NOAH'의 설계과정을 언급하였고 그 성능을 확인하기 위한 수학모델을 정립하고 실험을 실시하였다. 시뮬레이션과 수조실험을 통해 성능을 검증하였으며, 무인잠수정 NOAH의 설계목표인 자세 및 위치제어를 위한 기본실험을 실시하였다. 설계된 무인잠수정은 일반적인 ROV형태의 외형을 갖고 있으며, 이러한 외형은 NOAH의 제작목적에 따라 다양한 장비를 설치하여 실험하기가 용이하며 크기는 $0.75m{\times}0.5m{\times}0.5m$이다. 추진을 위한 450watt의 용량을 갖는 4개의 추진기가 주행방향, 횡방향, 수직방향으로 설치되어져 있고 수심을 측정하기 위한 압력센서와 방향각을 측정하기 위한 자력컴파스가 설치되었다. 잠수정의 주행을 제어하기 위해 펜티엄 III의 소형 온보드 컴퓨터에 운영체제는 윈도우 XP를 탑재하였다. 제작된 호버링 무인잠수정 NOAH는 다양한 환경에서 여러 가지 제어알고리즘을 적용하여 성능을 개선하고 실험을 하기 위한 테스트베드로 운영된다.

AW-SNUUV I의 동유체력 계수 추정 (Estimation of Hydrodynamic Coefficients for AUV-SNUUV I)

  • 김기훈;김준영;신민섭;최항순;성우제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.201-204
    • /
    • 2002
  • This paper describes the hydrodynamic characteristics of a test-bed AUV SNUUV-I constructed at Seoul National University. The main purpose of the AUV is to carry out fundamental control and hydrodynamic experiments. Its configuration is basically a long cylinder of 1.35m in length and 0.25m in diameter with delta-type wings near its rear end. On the edge of each wing, a thruster of 1/4HP is mounted, which is used for both drive and turn the vehicle for horizontal movement as the output control power is varied. A pair of control surfaces installed near its font part generates pitch moments for vertical movement. The 6 DOF mathematical model of SNUUV-I contains hydrodynamic forces and moments expressed in terms of a set of hydrodynamic coefficients. These coefficients can be classified into linear damping coefficients, linear inertial coefficients and nonlinear damping coefficients. It is important to estimate the exact value of these coefficients to control the vehicle precisely. Among these, the linear coefficients are known to affect the motion of the vehicle dominantly. The linear damping coefficients are estimated by using Extended Kalman Filter. The responses of the vehicle to input signals are used to estimate the hydrodynamic coefficients, which can be inferred from output signals measured from an IMU (inertial motion unit) sensor, while the linear inertial coefficients are calculated by a potential code. By using these coefficients estimated as described above, a simulation program is constructed using Matlab.

  • PDF