With the large amount of complex network data that is increasingly available on the Web, link prediction has become a popular data-mining research field. The focus of this paper is on a link-prediction task that can be formulated as a binary classification problem in complex networks. To solve this link-prediction problem, a sparse-classification algorithm called "Truncated Kernel Projection Machine" that is based on empirical-feature selection is proposed. The proposed algorithm is a novel way to achieve a realization of sparse empirical-feature-based learning that is different from those of the regularized kernel-projection machines. The algorithm is more appealing than those of the previous outstanding learning machines since it can be computed efficiently, and it is also implemented easily and stably during the link-prediction task. The algorithm is applied here for link-prediction tasks in different complex networks, and an investigation of several classification algorithms was performed for comparison. The experimental results show that the proposed algorithm outperformed the compared algorithms in several key indices with a smaller number of test errors and greater stability.
Safa, Mahdi;Haas, Carl T.;Hipel, Keith W.;Gray, Joel
Journal of Construction Engineering and Project Management
/
v.3
no.2
/
pp.1-12
/
2013
Research indicates that good front-end planning (FEP) results in the achievement of higher levels of project performance. By facilitating collaboration among stakeholders in diverse locations with the use of workflow-enabled processes, such pressures can be reduced, and the overall process and results of FEP can be improved. With these goals, a front-end planning tool (FEPT) has been developed as support for owners and major contractors who are engaged in front-end planning. This paper presents the new FEPT and describes how it has been used for construction megaprojects in the nuclear power, oil and gas, and mining industries. The paper begins with the definitions related to and an explanation of the general process for implementing and applying the FEPT and then describes and analyzes how the FEPT was applied in case study projects in order to test its validity. The results indicate that the FEPT increases the efficiency and effectiveness of front-end planning for the megaprojects studied and that it has the potential to produce similar results for other megaprojects.
Journal of the Korean Professional Engineers Association
/
v.19
no.4
/
pp.11-21
/
1986
Mine drainage from coal mines is mostly acidic, polluted and/or contaminated, even if its quantity has increased substantially during recent days. This causes two kinds of problems arising at mining districts; one is the environmental disruption and the other is insufficient water supply for living, employee's bathing and industrial purposes. In order to mitigate the aforementioned problems, a specific equipment of Korea type for mine drainage purification has been developed and its prototype manufactured, followed by its applicability tests implemented at mine site. The results of the tests indicates that the new equipment developed is much lower than and economical compared to, other existing neutralization facilities at home and abroad in capital investment at installation stage, the consumption of neutralizing chemicals at operation stage and the requirements of installation site. Whangji area where the prototype water treatment equipment is installed has been sustaining a short supply of usable water, especially in dry seasons and supplementing about 40㎥ of water brought from a location farther than 4km in distance to meet water requirements. The prototype water treatment equipment is however considered capable of providing compressor cooling water in sufficient amount from winter season In the future.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.12
/
pp.3274-3292
/
2013
Unsupervised methods for image segmentation are recently drawing attention because most images do not have labels or tags. A topic model is such an unsupervised probabilistic method that captures latent aspects of data, where each latent aspect, or a topic, is associated with one homogeneous region. The results of topic models, however, usually have noises, which decreases the overall segmentation performance. In this paper, to improve the performance of image segmentation using topic models, we propose two topic masks applicable to topic assignments of homogeneous regions obtained from topic models. The topic masks capture the noises among the assigned topic assignments or topic labels, and remove the noises by replacements, just like image masks for pixels. However, as the nature of topic assignments is different from image pixels, the topic masks have properties that are different from the existing image masks for pixels. There are two contributions of this paper. First, the topic masks can be used to reduce the noises of topic assignments obtained from topic models for image segmentation tasks. Second, we test the effectiveness of the topic masks by applying them to segmented images obtained from the Latent Dirichlet Allocation model and the Spatial Latent Dirichlet Allocation model upon the MSRC image dataset. The empirical results show that one of the masks successfully reduces the topic noises.
Objectives : This study aims to analyze the co-occurrence of pathological symptoms and corresponding acupoints as documented by the comprehensive acupuncture and moxibustion records in the classical texts of Far East traditional medicine as an aid to a more efficient understanding of the tacit treatment principles of ancient physicians. Methods : The Classic of Nourishing Life with Acupuncture and Moxibustion(Zhenjiu Zisheng Jing; hereinafter ZZJ) was selected as the primary reference book for the analysis. The pathology-acupoint co-occurrence analysis was performed by applying 4 values of vector space measures(weighted Euclidean distance, Euclidean distance, $Cram\acute{e}r^{\prime}s$ V and Canberra distance), which measure the distance between the observed and expected co-occurrence counts, and 3 values of probabilistic measures(association strength, Fisher's exact test and Jaccard similarity), which measure the probability of observed co-occurrences. Results : The treatment records contained in ZZJ were preprocessed, which yielded 4162 pathology-acupoint sets. Co-occurrence was performed applying 7 different analysis variables, followed by a prediction simulation. The prediction simulation results revealed the Weighted Euclidean distance had the highest prediction rate with 24.32%, followed by Canberra distance(23.14%) and association strength(21.29%). Conclusions : The weighted Euclidean distance among the vector space measures and the association strength among the probabilistic measures were verified to be the most efficient analysis methods in analyzing the correlation between acupoints and pathologies found in the classical medical texts.
Magazine of the Korean Society of Agricultural Engineers
/
v.28
no.1
/
pp.51-59
/
1986
Through the hydraulic model test, a more convenient and accurate method of deter- mining discharge coefficients in the sluice type of tide gates can be derived by the use of aubmergence ratio as a parameter. The results obtained are summarized as follows; 1. Discharge coefficients under submerged flow conditions can be obtained by the application of sutmergerice ratio (S) to the free flow equation of the broad-erested we r. 2. The critical submergence ratios (Scr) for the flat basin and the broad-crested types of sill have the same value of 0.8. 3. Under free flow conditions, the discharge coefficient (m) are 0.37 and 0. 35 for the flat basin and the broad-crested types of sill respectively. However, when submerged flow condition exists, the discharge coefficients for both types of sill is given by a regression equation of discharge coefficients (IL) on submergence ratios (8) expressed as; m 1.3- 1. 17S. 4. The relationships between S and Froude number (Fr), for the flat basin and the broad-crested types of sill are Fr=2. 79-2.495 and Fr2.5=5. 7-6.16S respectively. From the above relationships, it can be concluded that m can also be expressed in terms of the Froude number which is a very relevant hydraulic parameter of the open channel hydraulics.
This paper considers common due-date assignment and scheduling on parallel machines. The main decisions are: (a) deter-mining the common due-date; (b) allocating jobs to machines; and (c) sequencing the jobs assigned to each machine. The objective is to minimize the sum of the penalties associated with common due-date assignment, earliness and tardiness. As an extension of the existing studies on the problem, we consider sequence-dependent setup times that depend on the type of job just completed and on the job to be processed. The sequence-dependent setups, commonly found in various manufacturing systems, make the problem much more complicated. To represent the problem more clearly, a mixed integer programming model is suggested, and due to the complexity of the problem, two heuristics, one with individual sequence-dependent setup times and the other with aggregated sequence-dependent setup times, are suggested after analyzing the characteristics of the problem. Computational experiments were done on a number of test instances and the results are reported.
International Journal of Internet, Broadcasting and Communication
/
v.10
no.2
/
pp.25-30
/
2018
This paper is about wine quality classification with multilayer perceptron using the deep neural network. Wine complexity is an issue when predicting the quality. And the deep neural network is considered when using complex dataset. Wine Producers always aim high to get the highest possible quality. They are working on how to achieve the best results with minimum cost and efforts. Deep learning is the possible solution for them. It can help them to understand the pattern and predictions. Although there have been past researchers, which shows how artificial neural network or data mining can be used with different techniques, in this paper, rather not focusing on various techniques, we evaluate how a deep learning model predicts for the quality using two different activation functions. It will help wine producers to decide, how to lead their business with deep learning. Prediction performance could change tremendously with different models and techniques used. There are many factors, which, impact the quality of the wine. Therefore, it is a good idea to use best features for prediction. However, it could also be a good idea to test this dataset without separating these features. It means we use all features so that the system can consider all the feature. In the experiment, due to the limited data set and limited features provided, it was not possible for a system to choose the effective features.
In this paper, the effect of non-persistent joints was determined on the behavior of concrete specimens subjected to biaxial loading through numerical modeling using particle flow code in two dimensions (PFC2D). Firstly, a numerical model was calibrated by uniaxial, Brazilian and triaxial experimental results to ensure the conformity of the simulated numerical model's response. Secondly, sixteen rectangular models with dimension of 100 mm by 100 mm were developed. Each model contains two non-persistent joints with lengths of 40 mm and 20 mm, respectively. The angularity of the larger joint changes from $30^{\circ}$ to $90^{\circ}$. In each configuration, the small joint angularity changes from $0^{\circ}$ to $90^{\circ}$ in $30^{\circ}$ increments. All of the models were under confining stress of 1 MPa. By using of the biaxial test configuration, the failure process was visually observed. Discrete element simulations demonstrated that macro shear fractures in models are because of microscopic tensile breakage of a large number of bonded discs. The failure pattern in Rock Bridge is mostly affected by joint overlapping whereas the biaxial strength is closely related to the failure pattern.
Hwang Hak Soo;Lee Sang Kyu;Lee Tai Sup;Sung Nak Hoon
Geophysics and Geophysical Exploration
/
v.3
no.3
/
pp.83-87
/
2000
The noise prediction filter using a local/remote reference was developed to obtain a high quality data from seismic surveys over the area where seismic transmission power is limited. The method used in the noise prediction filter is a 3-layer neural network whose algorithm is backpropagation. A NRF (Noise Reduction Factor) value of about 3.0 was obtained with appling training and test data to the trained noise prediction filter. However, the scaling technique generally used for minimizing EM noise from electric and electromagnetic data cannot reduce seismic noise, since the technique can allow only amplitude difference between two time series measured at the primary and reference sites.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.