• Title/Summary/Keyword: Test hole

Search Result 867, Processing Time 0.026 seconds

Non-linear Correlation Between Hole Edge Condition and Hole Expansion Ratio (구멍 파단면 상태와 구멍확장률 간의 비선형 상관관계 분석)

  • Jeong, B.S.;Cho, W.;Park, S.;Jung, J.;Na, H.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.30 no.2
    • /
    • pp.74-82
    • /
    • 2021
  • Stretch-flangeability, which is the ability of sheet steels to be deformed into complex shapes, is a critical formability property in automobile body parts. In this study, the center-hole for hole expansion test, which is normally used to evaluate the stretch-flangeability of sheet steels, was prepared by both punching and electrical discharge machining (EDM) methods. Hole expansion ratio (HER) of punched hole was far lower than the HER of EDM drilled hole because of damage/crack in hole-edge due to punching process. The effect of hole-edge condition on HER was quantified by mechanical, fractographic and geometric factors. Based on these factors, the empirical equation used to determine HER for various sheet steels was derived using non-linear regression.

Suggesting a new testing device for determination of tensile strength of concrete

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.939-952
    • /
    • 2016
  • A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.

Recent Development of In-hole Seismic Method for Measuring Dynamic Stiffness of Subsurface Materials (지반의 동적물성치 측정을 위한 인홀탄성파시험의 최근 발전)

  • Mok Young-Jin;Jung Jin-Hun;Kim Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.105-114
    • /
    • 2005
  • An in-hole seismic method, which has been developed for measuring dynamic properties of subsurface materials, was improved in terms of cost effectiveness and practicality. The upgraded features include the motorized triggering system rather than the manual prototype version in the previous studies and a connecting rod between source and receiver in the module. The probe, thus, can be used for the field measurements of soil properties as well as those of rocks. The performance of the probe has been evaluated through extensive cross-hole tests and in-hole tests at various sites.

Evaluation of Sand Replacement Method for Determination of Soil Density (모래 치환법을 이용한 흙의 밀도 시험에 관한 평가)

  • Park, Sung-Sik;Choi, Hyun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.47-52
    • /
    • 2009
  • A sand replacement method is commonly used to determine the density of the compacted soils. The density of the test or compacted soil is computed on the assumption that the calibration container has approximately the same size or volume and allows the sand to deposit approximately in the same way as a test hole in the field. The sand filling process is simulated in the laboratory and its effect on the determination of density is investigated. Artificially-made holes with different heights and bottom shapes are prepared to simulate various shapes of the test hole in the field. Three sands with different gradations are used in the testing to examine how sand grain size influences the determination of density in the field. As the height of a test hole increases, the error between known density and calculated density decreases, regardless of the types of test hole and sand used. The results of this study can be used to reevaluate and revise the test method for soil density by the sand replacement method.

Experimental Evalutation of the Seismic Performance of WUF-W Moment Connections with a Modified Access Hole (개선된 엑세스 홀 형상을 갖는 WUF-W접합부의 실험을 통한 내진성능평가)

  • Han, Sang Whan;Jung, Jin;Moon, Ki-Hoon;Kim, Jin Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.21-28
    • /
    • 2012
  • Welded Unreinforced Flange-Welded Web (WUF-W) connection is one of Special Moment Frame (SMF) specified in ANSI/AISC-358. From the experimental test of WUF-W connection specimens conducted by the previous study, fracture occurred in the beam flange before achieving total inter-story drift angle of 0.04radian required for Special Moment Frames (SMF) system even though the specimens satisfied the design and detailing requirement specified in ANSI/AISC-358. These results are estimated as problem of the access hole geometry. In this study, a full-scale WUF-W connection specimen was made with a modified access hole geometry, and tested with the same test setting and loading as the previous test. From test results, the deformation capacity of the tested WUF-W connection specimen exceeded 4%, which is required for connections in SMF system. Comparing with the WUF-W specimens of the previous study, the strain demand of the beam flange in the tested specimen was decreased and energy dissipation capacity of the specimen was improved.

Hydrogen Aging During Hole Expanding Tests of Galvanized High Strength Steels Investigated Using a Novel Thermal Desorption Analyzer for Small Samples

  • Melodie Mandy;Maiwenn Larnicol;Louis Bordignon;Anis Aouafi;Mihaela Teaca;Thierry Sturel
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.145-153
    • /
    • 2024
  • In the automotive industry, the hole expanding test is widely used to assess the formability of punched holes in sheets. This test provides a good representation of formability within the framework defined by the ISO 16630 standard. During hole expanding tests on galvanized high strength steels, a negative effect was observed when there was a delay between hole punching and expansion, as compared to performing both operations directly. This effect is believed to be caused by hydrogen aging, which occurs when hydrogen diffuses towards highly-work hardened edges. Therefore, the aim of this study is to demonstrate the migration of hydrogen towards work-hardened edges in high strength Zn-coated steel sheets using a novel Thermal Desorption Analyzer (TDA) designed for small samples. This newly-developed TDA setup allows for the quantification of local diffusible hydrogen near cut edges. With its induction heating and ability to analyze Zn-coated samples while reducing artifacts, this setup offers flexible heat cycles. Through this method, a hydrogen gradient is observed over short distances in shear-cut galvanized steel sheets after a certain period of time following punching.

Study on Comparison of Methods for Estimation of Shear Wave Velocity in Core Zone of Existing Dam (기존 댐 코어죤의 전단파속도 산정기법 비교 연구)

  • Ha, Ik-Soo;Oh, Byung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.33-43
    • /
    • 2008
  • In this study, for the purpose of evaluating the shear wave velocity in core zone, cross-hole test, down-hole test, MASW (Multi-channel Analysis of Surface Wave), and seismic reflection survey were carried out on the crest of the existing 'Y' dam. The results of field tests were compared one another. Furthermore, the field test results were compared with the result by the Sawada's empirical recommendation method. The purpose of this study is to compare the results of four kinds of field tests for evaluation of shear wave velocity in core zone of existing dam, to verify applicability of the empirical method which was recommended by Sawada and Takahashi, and to recommend a reasonable method for evaluation of shear wave velocity which is needed to evaluate tile maximum shear modulus of core zone. From the results of four kinds of field tests such as cross-hole test, down-hole test, MASW, and seismic reflection survey, it was found that the shear wave velocity distributions were similar within 18 m in depth and the results obtained by MASW and seismic reflection survey were almost the same by 30 m in depth. For evaluation of shear wave velocity in core zone of the existing dam, in consideration that it is not easy to bore the hole ill the core zone of existing dam, surface surveys such as MASW and seismic reflection method are recommended as realistic methods. On condition that it is impossible to conduct the field test and it is preliminary investigation, it is recommended that Sawada's low bound empirical equation be used.

Investigation of the tensile behavior of joint filling under experimental test and numerical simulation

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi;Guo, Mengdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.243-258
    • /
    • 2022
  • In this paper, tensile behavior of joint filling has been investigated under experimental test and numerical simulation (particle flow code). Two concrete slabs containing semi cylinder hole were prepared. These slabs were attached to each other by glue and one cubic specimen with dimension of 19 cm×15 cm×6 cm was prepared. This sample placed in the universal testing machine where the direct tensile stress can be applied to this specimen by implementing a special type of load transferring device which converts the applied compressive load to that of the tensile during the test. In the present work, two different joint filling thickness i.e., 3 mm and 6 mm were prepared and tested in the laboratory to measure their direct tensile strengths. Concurrent with experimental test, numerical simulation was performed to investigate the effect of hole diameter, length of edge notch, filling thickness and filling length on the tensile behavior of joint filling. Model dimension was 19 cm×15 cm. hole diameter was change in four different values of 2.5 cm, 5 cm, 7.5 cm and 10 cm. glue lengths were different based on the hole diameter, i.e., 12.5 cm for hole diameter of 2.5 cm, 10 cm for hole diameter of 5 cm, 7.5 cm for hole diameter of 7.5 cm and 5 cm for hole diameter of 10 cm. length of edge notch were changed in three different value i.e., 10%, 30% and 50% of glue length. Filling thickness were changed in three different value of 3 mm, 6 mm and 9 mm. Tensile strengths of glue and concrete were 2.37 MPa and 6.4 MPa, respectively. The load was applied at a constant rate of 1 kg/s. Results shows that hole diameter, length of edge notch, filling thickness and filling length have important effect on the tensile behavior of joint filling. In fixed glue thinks and fixed joint length, the tensile strength was decreased by increasing the hole diameter. Comparing the results showed that the strength, failure mechanism and fracture patterns obtained numerically and experimentally were similar for both cases.

A Study on Micro Hole Punching with Soft Die Plate (소프트 다이 플레이트를 이용한 미세 구멍 펀칭 연구)

  • Yoo J. H.;Joo B. Y.;Jeon B. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.260-265
    • /
    • 2002
  • In micro hole punching process, it is very difficult to align punch with die hole. Misalignment can cause a falling-on in hole quality and breakage of punch and die. Micro punching using soft die plate without a die hole has a big advantage because it is not necessary to align punch with die hole and to consider die clearance. Soft die plates are made by polymers or hard rubbers which are softer than metals. In this study, several micro punching experiments are conducted. Micro punching test with some materials shows that micro hole punching is feasible with some soft die plates. Through the section shape obtained by mounting and polishing, the punched hole quality is measured and the shapes of burr and dome we studied.

  • PDF

A Study of Wind Tunnel Test of a Korean Traditional Bangpae Kite with the Wind Hole and Spanwise Curved Dihedral (스팬 방향 곡선 상반각과 방구멍을 갖는 전통 방패연의 풍동 실험 연구)

  • Kang, Chi-Hang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.866-870
    • /
    • 2011
  • In this paper, the aerodynamic forces of a Korean Traditional Bangpae Kite with the wind hole and spanwise curved dihedral were measured by wind tunnel test. For the flat plate kite without the wind hole, the stall presents at ${\alpha}=35^{\circ}$ with $C_{Lmax}$=1.2. The Korean Traditional Bangpae Kite with the wind hole had $C_{Lmax}$=1.05 at ${\alpha}=30^{\circ}$ without the apparent stall phenomena. As the wind hole size growing, the lift and drag of kite were changed slowly after stalling angle of attack. As increasing the leading edge dihedral angle, lift curves were more increased than drag curves. As the growing of wind hole size, the effect of dihedral angle was constant affect to the lift and drag of kite.