DOI QR코드

DOI QR Code

Hydrogen Aging During Hole Expanding Tests of Galvanized High Strength Steels Investigated Using a Novel Thermal Desorption Analyzer for Small Samples

  • Received : 2024.01.17
  • Accepted : 2024.03.25
  • Published : 2024.04.30

Abstract

In the automotive industry, the hole expanding test is widely used to assess the formability of punched holes in sheets. This test provides a good representation of formability within the framework defined by the ISO 16630 standard. During hole expanding tests on galvanized high strength steels, a negative effect was observed when there was a delay between hole punching and expansion, as compared to performing both operations directly. This effect is believed to be caused by hydrogen aging, which occurs when hydrogen diffuses towards highly-work hardened edges. Therefore, the aim of this study is to demonstrate the migration of hydrogen towards work-hardened edges in high strength Zn-coated steel sheets using a novel Thermal Desorption Analyzer (TDA) designed for small samples. This newly-developed TDA setup allows for the quantification of local diffusible hydrogen near cut edges. With its induction heating and ability to analyze Zn-coated samples while reducing artifacts, this setup offers flexible heat cycles. Through this method, a hydrogen gradient is observed over short distances in shear-cut galvanized steel sheets after a certain period of time following punching.

Keywords

References

  1. N. Fonstein, Advanced High Strength Steels - Physical Metallurgy, Design, Processing, and Properties, Springer (2015).
  2. ISO16630:2017, Metallic materials - Sheet and strip - Hole expanding test, International Organization for Standardization, Geneva (2017). https://cdn.standards.iteh.ai/samples/69771/f270c79a7a3a4975a676505fcba65f5d/ISO-16630-2017.pdf
  3. N. Winzer, T. Schaffner, V. Kokotin, and R. Thiessen, Proc. 4th international conference on metals & hydrogen (SteelyHydrogen 2022), Ghent, Belgium (2022).
  4. E. Atzema, and P. Seda, Proc. SCT Steels in Cars and Trucks, Amsterdam-Schiphol, Netherlands (2017).
  5. H. E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Analytical Chemistry, 29, 1702 (1957). Doi: http://dx.doi.org/10.1021/ac60131a045
  6. K. Bergers, E. Camisao de Souza, I. Thomas, N. Mabho, and J. Flock, Determination of hydrogen in Steel by Thermal Desorption Mass Spectroscopy, Steel Research International, 81, 499 (2010). Doi: https://doi.org/10.1002/srin.201000023
  7. M. Mandy, B. Nabi, M. Larnicol, X. V. Eynde, C. Georges and F. E. Goodwin, Influence of Zn-based Coating Alloys on Hydrogen Diffusion and Corrosion Resistance in a DP Steel, BHM Berg- und Huttenmannische Monatshefte, 166, 554 (2021). Doi: https://doi.org/10.1007/s00501-021-01160-9
  8. K. R. Jo, L. Cho, D. H. Sulistiyo, E. J. Seo, S. W. Kim, and B. C. De Cooman, Effect of Al-Si coationg and Zn coating on the hydrogen uptake and embrittlement of ultra-high strength press-hardened steel, Surface and Coatings Technology, 374, 1108 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2019.06.047
  9. D. H. Coleman, B. N. Popov, R. E. White, Hydrogen permeation inhibition by thin layer Zn-Ni alloy electrodeposition, Journal of Applied Electrochemistry, 28, 889 (1998). Doi: https://doi.org/10.1023/A:1003408230951
  10. A. Lara, I. Picas, and D. Casellas, Effect of the cutting process on the fatigue behaviour of press hardened and high strength dual phase steels, Journal of Materials Processing Technology, 213, 1908 (2013). Doi: https://doi.org/10.1016/j.jmatprotec.2013.05.003
  11. Y. Fukai, The Metal-Hydrogen System - Basic Bulk Properties, Springer (2005).
  12. C. Georges, T. Sturel, P. Drillet, and J.-M. Mataigne, Absorption/Desorption of Diffusible Hydrogen in Aluminized Boron Steel, ISIJ Internationl, 53, 1295 (2013). Doi: https://doi.org/10.2355/isijinternational.53.1295
  13. L. Cho, D. H. Sulistiyo, E. J. Seo, K. R. Jo, S. W. Kim, J. K. Oh, Y. R. Cho, and B. C. De Cooman, Hydrogen absorption and embrittlement of ultra-high strength aluminized press hardening steel, Materials Science and Engineering: A, 734, 416 (2018). Doi: https://doi.org/10.1016/j.msea.2018.08.003
  14. Z. Wang, J. Liu, F. Huang, Y.-J. Bi, and S-Q. Zhang, Hydrogen Diffusion and Its Effect on Hydrogen Embrittlement in DP Steels With Different Martensite Content, Frontiers in Materials, 7, 1 (2020). Doi: https://doi.org/10.3389/fmats.2020.620000
  15. S. Frappart, A. Oudriss, X. Feaugas, J. Creus, J. Bouhattate, F. Thebault, L. Delattre, and H. Marchebois, Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy, Scripta Materialia, 65, 859 (2011). Doi: https://doi.org/10.1016/j.scriptamat.2011.07.042
  16. P. Maass, and P. Peissker, C. Ahner, Handbook of Hotdip Galvanization, Wiley-Vch (2011).
  17. M. Krid, M. Mandy, T. Sturel, R. Grigorieva, P. Drillet, and P. J. Jacques, A better understanding of hydrogen trapping and diffusion in aluminized press-hardenable steels, Journal of Materials Research and Technology, 28, 1514 (2023). Doi: https://doi.org/10.1016/j.jmrt.2023.11.214
  18. T. Michler, and M. P. Balog, Hydrogen environment embrittlement of an ODS RAF steel-Role of irreversible hydrogen trap sites, International Journal of Hydrogen Energy, 35, 9746 (2010). Doi: https://doi.org/10.1016/j.ijhydene.2010.06.071
  19. J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, and A. Atrens, A review of hydrogen embrittlement of martensitic advanced high-strength steels, Corrosion Reviews, 34, 153 (2016). Doi: https://doi.org/10.1515/correv-2016-0006
  20. F. G. Wei, and K. Tsuzaki, Hydrogen trapping phenomena in martensitic steels, In: Gaseous hydrogen embrittlement of materials in energy technologies (Vol. 1), pp.493 - 525, Woodhead Publishing Limited (2012). Doi:https://doi.org/10.1533/9780857093899.3.493
  21. H. K. D. H. Badeshia, Prevention of Hydrogen Embrittlement in Steels, ISIJ International, 56, 24 (2016). Doi: https://doi.org/10.2355/isijinternational.ISIJINT-2015-430
  22. K. Verbeken, Analysing hydrogen in metals: bulk thermal desorption spectroscopy (TDS) methods In: Gaseous hydrogen embrittlement of materials in energy technologies (Vol. 1), pp. 27 - 55, Woodhead Publishing Limited (2012). Doi: https://doi.org/10.1533/9780857095374.1.27