• Title/Summary/Keyword: Test furnace

Search Result 759, Processing Time 0.024 seconds

Fundamental Properties of Controlled Low Strength Materials Mixed Blast Furnace Slag and Sewage Sludge (고로슬래그미분말 및 하수슬러지를 혼입한 시멘트계 저강도 재료의 기초적 물성)

  • Kim, Dong-Hun;Park, Shin;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.53-54
    • /
    • 2015
  • As the result of uniaxial compression strength test on the CLMS mixing BFS and SS with BFS 4000, it required to determine the desired strength through increasing unit quantity of cement in mixing process because of dramatic strength deterioration of strength according to increasing replacing rate. In this study's result, regardless of differences in fine aggregates used, in order to get uniaxial compression strength in the scope exceeding criteria of minimum strength for applying to the field, the most reasonable combination was to mix replacing BFS with fineness of 6000 in 30%. For the CLMS mixing BFS and SS, in order to improve flow ability by securing quantity of minimum unit and to repress bleeding rate with securing uniaxial compress strength considering the field applicability, regardless of differences in fine aggregates used, to mix BFS over 6000 in 30% was most effective.

  • PDF

A Study on Freezing and Trawing Resistance of Concrete with the Ratio of Ground Granulated Blast-Furnace Slag Replacement (고로슬로그 미분말의 치환율에 따른 콘크리트의 동결융해 저항성에 관한 연구)

  • 최세규;김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.149-155
    • /
    • 1997
  • 고로슬래그 미분말을 사용한 콘크리트\ulcorner 수화속도가 느려 어린 재령시 동해의 영향을받기 쉽다. 본 연구에서는 고로슬래그 미분말을 사용한 콘크리트의 동결융해 저항성을 알아보기 위해 고로슬래그 미분말의 치환율과 물-결합재비를 변화시켜 제조한 콘크리트에 대해 동결융해시험을 실시하였다. 또한 동일한 치환율, 물-결합재비의 콘크리트에 AE제를 첨가시켜 동결융해 저항성의 개선효과를 알아보았다. 시험결과 고로슬래그 미분말의 치환율이 증가할수록 동결융해 저항성은 작게 나왔다. 또한 non-AE 콘크리트의 경우 물-결합재비가 51%, 45%일 때 내구성지수는 각각 2.4%, 40.0%이하로 매우 나쁘게 나타났으나, AE콘크리트의 경우 물 -결합재비가 45%와 51%인 콘크리트의 내구성지수는 각각 90.2% 80.9%이상으로 동결융해 저항성이 매우 우수하게 나타났다.

Effect of Blast-Furnace Slag Powder on the Mechanical Properties of Hardened Concrete (고로슬래그 미분말을 사용한 콘크리트의 역학적 특성에 관한 연구)

  • 김형래;최진만;임정수;김상규;변승호;윤철현;최현국
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.207-210
    • /
    • 1999
  • This experimental study was carried out to estimate the effects of mixing dosage rate and blaine on the mechanical properties of concrete admixed with ground granulated blast-furnace slag (BFS) powder. According to the test results, compressive strength of concrete admixed with slag not more than 35% was at least 80% of compressive strength of OPC concrete at 3 days age, and much bigger than that of OPC concrete at 28 days age. Consequently, in order to apply the BFS to the concrete is demanded, and rigorous construction management should be followed.

  • PDF

A Study on the Properties of the Confined water ratio for Binder type and Replacement ratio (결합재의 종류 및 치환율에 따른 구속수비의 특성에 관한 연구)

  • Kwon Yeong-Ho;Lee Hyun-Ho;Lee Hwa-Jin;Ha Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.584-587
    • /
    • 2004
  • This research investigates the rheological behavior and the confined water ratio of the cement paste and binder condition in order to predict mix design proportion of the high flowing concrete. The purpose of this study is to determine the optimum replacement ratio of binders including fly ash, and lime stone powder by the cement weight. For this purpose, belite cement, blast furnace slag cement and ordinary portland cement are selected. As test results, the confined water ratio shows the following range ; OPC>blast furnace slag cement>belite cement. Therefore, belite cement is proved very excellent cementitious materials in a view point of the flowability. The optimum replacement ratio of lime stone powder is shown over $30\%$ in case of belite cement and about $10\%$ in case of slag cement type. Also, the optimum replacement ratio of fly ash is shown $30\%$ by the cement weight considering the confined water ratio and deformable coefficient of the paste condition.

  • PDF

The Effect of Particle Size on Ignition Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.285-292
    • /
    • 1993
  • A cylindrical-shape, horizontal furnace was used to investigate the effect of particle size on the pulverized coal combustion behavior. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Ignition characteristics of pulverized coal flame were determined through the amount of methane in the carrier gas for the self-sustaining flame. Easiest ignition occurred with the immediately-sized coal particles. Ignition of coal jet flame appeared to occur through a gas-phase homogeneous process for particles larger than 30 microns. Below this limiting size, heterogeneous process probably dominated ignition of coal flame. Oxygen concentration of combustion air was varied up to 50%, to determine the oxygen-enrichment effect on the coal ignition behavior. Oxygen enrichment of primary air assisted ignition behavior of pulverized coal flame. However, enrichment of secondary air didn't produce any effect on the ignition behavior.

  • PDF

The Effect of Particle Size on Combustion Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek;Jeon, Heung-Shin;Wongee Chun
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.162-169
    • /
    • 1997
  • The particle size effect on the combustion characteristics of pulverized coal was investigated in the cylindrical-shape, horizontal furnace, fired in the range of 8.8∼10.6 kw. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Burnout behavior of pulverized coal flame were determined through the measurement of stable species concentrations (CO$_2$and H$_2$O). Concentrations of CO$_2$were compared with the theoretical values and the result showed good agreement. Thermal behavior of pulverized coal flame were determined as maximum flame temperatures occurred at fuel-rich conditions in every case. Flame lengths were also determined by decreasing with the particle size decrease. The flame length of the fine sized coal sample was comparable to that produced by distillate oil. The color of the coal flames ranged from orange to yellow, with the flame of the fine size fraction being brighter and yellower than the others.

  • PDF

Sliding Wear Properties of Borided Iron and Steel in Fluidized Bed Furnace (유동상열처리로에 의해 BORIDING처리한 철강재료의 미끄럼마모특성연구)

  • Lee, Han-Young;Bae, Seok-Choun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.4
    • /
    • pp.261-270
    • /
    • 1996
  • Boriding is one of the chemical methods to achieve the case hardening of steel as well as nitriding or carburizing. The surface layer of the borided steel shows higher hardness and exhibits better resistance to corrosion or fatigue than the nitrided or carburized steel. The great majority of previous studies were confined to mild steel or some alloy steel. To enlarge the application, ductile cast iron (DCI) as a material for boriding has been tried in this study. Thus, sliding wear test has conducted using a pin-on-disc machine to compare between borided DCI and mild steel in fluidized bed furnace. The results show that the wear resistance of borided DCI is improved. Especially it is more efficient in the case of occurence of the mechanical wear.

  • PDF

Influence of Admixtures on Strengths and Freezing and Thawing Resistance of Cement Mortar for Precast Products (혼화재료가 공장제품용 시멘트 모르타르의 강도 및 동결융해 저항성에 미치는 영향)

  • 한천구;신병철;김기철;이상태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.11-19
    • /
    • 2000
  • It has been reported that few manufacturers of cement mortar for precast products use chemical and mineral admixture due to the absense of restrictions related to the application of admixture and the poor manufacturing facilities. Therefore, this paper is intended to contribute to the improvement of quality by investigating the properties of cement mortar for precast products using fly ash, blast furnace slag and AE water reducing agent. According to the test results. it was found that the cement mortar products using fly ash and AE water-reducing agent had better qualities than those of ordinary portland cement.

A Experimental Study on the High Performance Concrete for Bridge Decks (고성능 콘크리트의 교량 바닥판 적용을 위한 실험적 연구)

  • Suh, Jin-Won;Rhee, Ji-Young;Cheong, Hai-Moon;Ku, Bon-Sung;Shin, Do-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.53-56
    • /
    • 2006
  • To develop more durable concrete deck, performance characteristic test of HPC(High Performance Concrete) mixtures was carried out. The parameters used in this project were ; the mineral admixture details were 4 types such as ordinary portland cement(OPC), 20% fly ash (FA), 20% fly ash and 4% silica fume(FS), and 40% ground granulated blast-furnace slag(BS). Their design compressive strengths were 27MPa and 35MPa respectively. The results showed the compressive strength of concrete did not much affect the durability of concrete. HPC with blast-furnace slag(BS) showed the good durability but was prone to crack. HPC with fly ash(FA) or with fly ash and silica fume(FS) had the good durability and crack resistance.

  • PDF

Autogenous Shrinkage of Concrete Containing Blast-Furnace Slag (고로 슬래그를 함유한 콘크리트의 자기 수축)

  • 이회근;권기헌;이광명;김규용;손유신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.417-420
    • /
    • 2003
  • Concrete with low water to binder ratio (W/B) is prone to large autogenous shrinkage. Early age cracking of concrete would be caused by tensile stress induced by large autogenous shrinkage under restrained condition. Therefore, it is necessary to measure autogenous shrinkage to control the early age cracking of concrete. An objective of this study is to investigate the effects of W/B and blast furnace slag (BFS) on autogenous shrinkage of concrete. Autogenous shrinkage of concrete with various W/B ranging from 0.42 to 0.27 and BFS contents of 0, 30 and 50% were measured. Test results show that the autogenous shrinkage of concrete increases as the W/B decreases, and all BFS concretes showed larger autogenous shrinkage than OPC concretes with the same W/B. Moreover, the higher BFS content, the larger autogenous shrinkage.

  • PDF