• Title/Summary/Keyword: Test configuration

Search Result 1,238, Processing Time 0.026 seconds

Development of a Real-time OS Based Control System for Laparoscopic Surgery Robot (복강경 수술로봇을 위한 실시간 운영체제 기반 제어 시스템의 개발)

  • Song, Seung-Joon;Park, Jun-Woo;Shin, Jung-Wook;Kim, Yun-Ho;Lee, Duk-Hee;Jo, Yung-Ho;Choi, Jae-Seoon;Sun, Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.32-39
    • /
    • 2008
  • This paper reports on a realtime OS based master-slave configuration robot control system for laparoscopic surgery robot which enables telesurgery and overcomes shortcomings with conventional laparoscopic surgery. Surgery robot system requires control system that can process large volume information such as medical image data and video signal from endoscope in real-time manner, as well as precisely control the robot with high reliability. To meet the complex requirements, the use of high-level real-time OS (Operating System) in surgery robot controller is a must, which is as common as in many of modem robot controllers that adopt real-time OS as a base system software on which specific functional modules are implemened for more reliable and stable system. The control system consists of joint controllers, host controllers, and user interface units. The robot features a compact slave robot with 5 DOF (Degree-Of-Freedom) expanding the workspace of each tool and increasing the number of tools operating simultaneously. Each master, slave and Gill (Graphical User Interface) host runs a dedicated RTOS (Real-time OS), RTLinux-Pro (FSMLabs Inc., U.S.A.) on which functional modules such as motion control, communication, video signal integration and etc, are implemented, and all the hosts are in a gigabit Ethernet network for inter-host communication. Each master and slave controller set has a dedicated CAN (Controller Area Network) channel for control and monitoring signal communication with the joint controllers. Total 4 pairs of the master/slave manipulators as current are controlled by one host controller. The system showed satisfactory performance in both position control precision and master-slave motion synchronization in both bench test and animal experiment, and is now under further development for better safety and control fidelity for clinically applicable prototype.

Evaluation of luminance performance of scintillating film for monitoring the position of a radioactive source in an NDT apparatus (비파괴검사 장치 내 방사선원 위치감시용 섬광필름의 발광성능 평가)

  • Lee, Kyung-Jin;Yun, Jeong-Ick;Park, Byung-Gi;Kim, Sin;Lee, Bong-Soo
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.13-17
    • /
    • 2005
  • In domestic nondestructive testing(NDT) field, there have recently been radiation exposure accidents due to a disregard for confirmation of the position of radioisotope during the test. In order to prevent these kinds of accidents, a scintillating film has been developed. The scintillating film that can convert gamma-ray to visible light has a function of the position detection of radioisotope in a opaque guide tube of an NDT apparatus. The aim of this study is to enhance the visibility performance of the scintillating film and find out the best configuration of the scintillating film. In order to find appropriate materials for the scintillating film, various inorganic scintillating materials were evaluated in this work. An absolute luminance of the scintillating films was measured by luminance meter for evaluation of visibility performance. Ir-192 gamma projector was used for NDT apparatus. The experiment shows that the scintillating film with reflective layer was the more effective performance for visibility. The higher mixing ratio of scintillating material to binding material, the higher luminance was measured. $Gd_2O_2S(Tb)$ inorganic powder as the scintillating materials had the best performance for visibility of the scintillating film. The developed scintillating film helps to ensure safer environment to the operators.

  • PDF

The behavior of branch-rotated and chord web-stiffened T-joints in Cold-formed Square Hollow Sections (지관이 회전되고 주관 웨브 보강한 각형강관 T형 접합부의 거동에 관한 연구)

  • Park, Keum Sung;Bae, Kyu Woong;Jeong, Sang Min;Kang, SeokGyu;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.673-681
    • /
    • 2003
  • This paper describes the experiment that determines the ultimate strength of new uniplanar T-joints made of cold-formed square hollow sections. The new T-joint focused on the configuration of a branch member that is oriented 45 degrees to the plane of the truss and welded to the chord member whose web is stiffened with plate. The strength and failure mode are examined using the existing strength formula for the branch-rotated T-joint $(16.7{\leq}2{\gamma}(B/T){\leq}33.3$ and $0.63{\leq}{\beta}(b1/B){\leq}0.7)$. The test result shows that the capacity of the stiffened joint increases with thicker stiffening plate. The failure mode of the specimen $(2{\gamma}=33.3)$ is stiffened with plate changes from M2 (flange failure) to M3 (combined failure). On the other hand, the failure mode of the specimen $(2{\gamma}=16.7)$ is stiffened with plate changes from M1 ( web failure) to M2 (flange failure)

A Study on Safety and Performance Evaluation of Smart All-in-one Cardiopulmonary Assist Device (스마트올인원 심폐순환보조장치의 안전성 및 성능평가에 관한 연구)

  • Park, Junhyun;Ho, YeJi;Lee, Yerim;Lee, Duck Hee;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.197-205
    • /
    • 2019
  • The existing Extracorporeal membrane oxygenation(ECMO) and Cardiopulmonary bypass system(CPB) have been developed and applied to various devices according to their respective indications. However, due to the complicated configuration and difficult usage method, it causes inconvenience to users and there is a risk of an accident. Therefore, smart all-in-one cardiopulmonary circulation device is being developed recently. The smart all-in-one cardiopulmonary assist device consists of a blood pump for cardiopulmonary bypass, a blood oxidizer for cardiopulmonary bypass, a blood circuit for cardiopulmonary bypass, and an artificial cardiopulmonary device. It is an integrated cardiopulmonary bypass device that can be used for a variety of purposes such as emergency, intraoperative, post-operative intensive care, and long-term cardiopulmonary assist, combined with CPB used in open heart surgery and ECMO used when patient's cardiopulmonary function does not work normally. The smart all-in-one cardiopulmonary assist device does not exist as a standard and international standard applicable to advanced medical devices. Therefore, in this study, we will refer to the International Standard for Blood Components, the International Standard for Blood, the Guideline for Blood Products, and prepare applicable performance and safety guidelines to help quality control of medical devices, and contribute to the improvement of the health of people. The guideline, which is the result of conducted a survey of the method of safety and performance test, is based on the principle of all-in-one cardiopulmonary aiding device, related domestic foreign standards, the status of domestic and foreign patents, related literature, blood pump(ISO 18242), blood oxygenator (ISO 7199), and blood circuit (ISO 15676) for cardiopulmonary bypass.The items on blood safety are as follows: American Society for Testing and Materials ASTM F1841-97R17), and in the 2010 Food and Drug Administration's Safety Assessment Guidelines for Medical Assisted Circulatory Devices. In addition, after reviewing the guidelines drawn up through expert consultation bodies including manufacturers / importers, testing inspectors, academia, etc. the final guideline was established through revision and supplementation process. Therefore, we propose guidelines for evaluating the safety and performance of smart all-in-one cardiopulmonary assist devices in line with growing technology.

Double-Gauss Optical System Design with Fixed Magnification and Image Surface Independent of Object Distance (물체거리가 변하여도 배율과 상면이 고정되는 이중 가우스 광학계의 설계)

  • Ryu, Jae Myung;Ryu, Chang Ho;Kim, Kang Min;Kim, Byoung Young;Ju, Yun Jae;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • A change in object distance would generally change the magnification of an optical system. In this paper, we have proposed and designed a double-Gauss optical system with a fixed magnification and image surface regardless of any change in object distance, according to moving the lens groups a little bit to the front and rear of the stop, independently parallel to the direction of the optical axis. By maintaining a constant size of image formation in spite of various object-distance changes in a projection system such as a head-up display (HUD) or head-mounted display (HMD), we can prevent the field of view from changing while focusing in an HUD or HMD. Also, to check precisely the state of the wiring that connects semiconductor chips and IC circuit boards, we can keep the magnification of the optical system constant, even when the object distance changes due to vertical movement along the optical axis of a testing device. Additionally, if we use this double-Gauss optical system as a vision system in the testing process of lots of electronic boards in a manufacturing system, since we can systematically eliminate additional image processing for visual enhancement of image quality, we can dramatically reduce the testing time for a fast test process. Also, the Gaussian bracket method was used to find the moving distance of each group, to achieve the desired specifications and fix magnification and image surface simultaneously. After the initial design, the optimization of the optical system was performed using the Synopsys optical design software.

The Impact of Spatio-temporal Resolution of GEO-KOMPSAT-2A Rapid Scan Imagery on the Retrieval of Mesoscale Atmospheric Motion Vector (천리안위성 2A호 고속 관측 영상의 시·공간 해상도가 중규모 대기운동벡터 산출에 미치는 영향 분석)

  • Kim, Hee-Ae;Chung, Sung-Rae;Oh, Soo Min;Lee, Byung-Il;Shin, In-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.885-901
    • /
    • 2021
  • This paper illustratesthe impact of the temporal gap between satellite images and targetsize in mesoscale atmospheric motion vector (AMV) algorithm. A test has been performed using GEO-KOMPSAT-2A (GK2A) rapid-scan data sets with a temporal gap varying between 2 and 10 minutes and a targetsize between 8×8 and 40×40. Resultsshow the variation of the number of AMVs produced, mean AMV speed, and validation scores as a function of temporal gap and target size. As a results, it was confirmed that the change in the number of vectors and the normalized root-mean squared vector difference (NRMSVD) became more pronounced when smaller targets are used. In addition, it was advantageous to use shorter temporal gap and smaller target size for the AMV calculation in the lower layer, where the average speed is low and the spatio-temporal scale of atmospheric phenomena is small. The temporal gap and the targetsize are closely related to the spatial and temporalscale of the atmospheric circulation to be observed with AMVs. Thus, selecting the target size and temporal gap for an optimum calculation of AMVsrequires considering them. This paper recommendsthat the optimized configuration to be used operationally for the near-real time analysis of mesoscale meteorological phenomena is 4-min temporal gap and 16×16 pixel target size, respectively.

A Full Scale Hydrodynamic Simulation of High Explosion Performance for Pyrotechnic Device (파이로테크닉 장치의 고폭 폭발성능 정밀 하이드로다이나믹 해석)

  • Kim, Bohoon;Yoh, Jai-ick
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A detailed hydrodynamic analysis SW was developed to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The pyrotechnic device is composed of four main components, namely a donor unit (HNS+HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BPN) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (${\omega}_c=8.3kHz$). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

Effect of Micro-bolt Reinforcement for Composite Scarf Joint (복합재 스카프 조인트에서의 마이크로 볼트 보강에 대한 타당성 연구)

  • Lee, Gwang-Eun;Sung, Jung-Won;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • The reinforcement effect of micro-bolt for a bonded scarf joint was investigated. Three scarf ratios of 1/10, 1/20, and 1/30 were considered to examine the effect of scarf patch configuration on joint strength. To maintain the same density of micro-bolt, 16, 32, and 48 bolts were installed in the scarf joint specimens with scarf ratios of 1/10, 1/20, and 1/30, respectively. Tests were also carried out on the joints that are bonded with only adhesive and that are fastened with only micro-bolts to obtain reference values. The average failure loads of the adhesive joints with scarf ratios of 1/10, 1/20, and 1/30 were 29.7, 39.6, and 44.8 kN, respectively. In case of micro-bolt reinforcement, the failure loads at the same scarf ratios were 28.4, 37.2, and 40.1 kN, respectively, which corresponds to 96, 94, and 90% of the pure adhesive joint failure loads. In the case of using only micro-bolts, the failure loads were only 13-25% of the average failure loads of pure adhesive joints. Fatigue test was also conducted for the joints with scarf ratio of 1/10. The results show that the fatigue strength of hybrid joints using both adhesive and microbolts together slightly increased compared to the fatigue strength of adhesive joint, but the rate of increase was small to 2-3%. Through this study, it was confirmed that the reinforcement effect of micro-bolt is negligible in the scarf joints where shear stress is dominating the failure, unlike in the structure where peel stress is dominant.

Measurement of Noise Wave Correlation Matrix for On-Wafer-Type DUT Using Noise Power Ratios (잡음전력비를 이용한 온-웨이퍼형 DUT의 잡음상관행렬 측정)

  • Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.111-123
    • /
    • 2019
  • In this paper, we propose a method for defining the input termination for on-wafer-type device under test (DUT) measurement. Using the newly defined input termination and noise wave correlation matrix (NWCM) measurement method based on noise power ratio, the NWCM of the on-wafer-type DUT was measured. We demonstrate a noise measurement configuration that includes wafer probes and bias tees to measure the on-wafer DUT. The S-parameter of the adapter that combines the bias tee, probe, and a line terminated by open is required to define the input termination for on-wafer DUT measurement. To measure the S-parameter of the adapter, a 2-port S-parameter measurement method using 1-port measurement is introduced. Using the measured S-parameters, a method for defining the new input termination for on-wafer-type DUT measurement is applied. The proposed method involves the measurement of the NWCM of the chip with a 1.5 dB noise figure. The noise parameters of the chip were obtained using the measured NWCM. The results indicate that the obtained values of the noise parameters are similar to those mentioned on a datasheet for the chip. In addition, repeated measurements yielded similar results, thereby confirming the reliability of the measurements.

Modeling and Simulation for Analyzing Efficient Operations on Public Bike System: A Case Study of Sejong City (공공 자전거 시스템의 효율적 운용을 위한 모델링 및 시뮬레이션: 세종시 사례 중심)

  • Bae, Jang Won;Choi, Seon Han;Lee, Chun-Hee;Paik, Euihyun
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.103-112
    • /
    • 2021
  • In recent years, public bicycle systems are widely spread over the world according to the development of ICT technology. Since the public bicycle systems in large cities need to secure both publicity and convenience for citizens, analysis of various their issues from introduction to operation is required. In addition, it is also necessary to prepare for various scenarios for coexistence with the PM business, which is recently in the spotlight as a last mile means and normally managed privately. This paper introduces modeling and simulation for efficient operations of public bicycle systems. In particular, the proposed method was developed in a form that can be easily used in other cities by modeling the general structure and behavior of the public bicycle system, and it was developed to facilitate modification and expansion of the future model with a component-based model configuration. This paper provides a case study of the propose method, which is the public bicycle simulation in Sejong City. The simulation results were derived by applying the data from the public bicycle system of Sejong City, and they were verified with the associated real data of Sejong City. Using the verified model, it is expected that it can be used as a tool to design and analyze various services on the public bicycle systems, which were especially suitable for Sejong City.